Overcoming Probabilistic Faults in Disoriented Linear Search

Department of Mathematics

Konstantinos Georgiou

Toronto Metropolitan University

Joint work with Nikos Giachoudis and Evangelos Kranakis.

Presentation Outline

- Linear Search - Related Work
- New Problem \& Main Results
- Related Work
- Searching with 1 Faulty Agent: Results Outline
- Searching with 2 Faulty Agents: Results Outline
- Future Directions

Deterministic Linear Search - 1 Searcher

Specs:

- One speed-1 searcher, starting at origin of infinite line.
- No turning cost, no extra time for changing direction.
- Treasure (exit) at unknown location, at least 1 away.
- Treasure cannot be seen from distance.
- Treasure detected when searcher walks over it.

Feasible Solutions:

- Deterministic trajectory covering (eventually) entire line.

The objective:

- Minimize "worst case" relative search time ($\frac{\text { time to hit treasure d-away }}{d}$)

Known (Opt) Competitive Ratios

- Optimal deterministic 0 -faulty, 1 searcher
[Baeza-Yates, Culberson, Rawlins, 1993]

Randomized Linear Search - 1 Searcher

Specs:

- One speed-1 searcher, starting at origin of infinite line.
- No turning cost, no extra time for changing direction.
- Treasure (exit) at unknown location, at least 1 away.
- Treasure cannot be seen from distance.
- Treasure detected when searcher walks over it.

Feasible Solutions:

- Randomized trajectory covering (eventually) entire line.

The objective:

- Minimize "worst case" expected relative search time

Known (Opt) Competitive Ratios

Deterministic Linear Search - 2 Searchers

Specs:

- Two speed-1 searchers, starting at origin of infinite line.
- No turning cost, no extra time for changing direction.
- Treasure (exit) at unknown location, at least 1 away.
- Treasure cannot be seen from distance.
- Treasure detected when searcher walks over it.
- Searchers aware of each others' trajectories (centralized model)
- Searchers access to same clock (synchronous model)
- Communication between Searchers: F2F or Wireless

Feasible Solutions:

- Deterministic trajectories covering (eventually) entire line.

The objective:

- Minimize "worst case" relative evacuation time ($\frac{\text { time to hit treasure } d \text {-away }}{d}$)

Known (Opt) Competitive Ratios

Searching with probabilistically faulty agents?

Presentation Outline

- Linear Search - Related Work
- New Problem \& Main Results
- Related Work
- Searching with 1 Faulty Agent: Results Outline
- Searching with 2 Faulty Agents: Results Outline
- Future Directions

Linear Search - One p-faulty Searcher

Specs:

- One speed-1 searcher, starting at origin of infinite line.
- No turning cost, no extra time for changing direction.
- Treasure (exit) at unknown location, at least 1 away.
- Treasure cannot be seen from distance.
- Treasure detected when searcher walks over it.
- Probabilistic faults: \boldsymbol{p}-faulty (specs to be defined shortly)

Feasible Solutions:

- (Deterministic or Randomized) trajectory covering (eventually) entire line. The objective:
- Minimize "worst case" expected relative search time

Known (Opt) \& New Competitive Ratios

New Upper bounds
 One Deterministic p-Faulty Searcher

Complementary Observations

- No algorithm for one p-faulty searcher has CR better than 4.59112
- Every algorithm for one p-faulty searcher has CR at least $\Omega\left(\frac{1}{1-2 p}\right)$

Linear Search - Two p-faulty Searcher

Specs:

- Two speed-1 searcher, starting at origin of infinite line.
- No turning cost, no extra time for changing direction.
- Treasure (exit) at unknown location, at least 1 away.
- Treasure cannot be seen from distance.
- Treasure detected when searcher walks over it.
- Searchers aware of each others' trajectories (centralized model)
- Searchers access to same clock (synchronous model)
- Probabilistic faults: p-faulty (specs to be defined shortly)
- Communication between Searchers: F2F or Wireless

Feasible Solutions:

- (Deterministic or Randomized) trajectory covering (eventually) entire line.

The objective:

- Minimize "worst case" expected relative evacuation time

Known (Opt) \& New Competitive Ratios

New Upper bounds Deterministic p-Faulty; Two Searchers

Theorem
Two p-faulty wireless searchers can evacuate with expected competitive ratio

$$
3+4 \sqrt{p(1-p)}+\epsilon
$$

For every $\epsilon>0$, and with any concentration.

Presentation Outline

- Linear Search - Related Work
- New Problem \& Main Results
- Related Work
- Searching with 1 Faulty Agent: Results Outline
- Searching with 2 Faulty Agents: Results Outline
- Future Directions

What Else is Out There?

Rough Summary of Variations

- Number of agents \& communication model
- Wireless, Face-2-face, token based, blackboard, limited range communication
- Feasible solutions, hidden item found by
- any searcher
- specific searcher
- all searchers
- Cost quantification
- Evacuation of first or last or specific agent,
- weighted average of termination costs
- Trade-offs
- Cost Analysis
- Worst case, average case, competitive analysis
- Domain
- Line, half-line, k-star, plane, grid, circle, disk, triangles, rectangles, graphs
- Faults
- Crash faults, byzantine, probabilistic faults
- Other Specs
- Speed, energy consumption, multiple exits

Presentation Outline

- Linear Search - Related Work
- New Problem \& Main Results
- Related Work
- Searching with 1 Faulty Agent: Results Outline
- Searching with 2 Faulty Agents: Results Outline
- Future Directions

p-faulty Behaviour for 1 Searcher

- No orientation
- Every attempt to turn is independent Bernoulli Trial with success $1-p$.
- Searcher not aware if turn is successful
- Unlimited attempts, whenever.

Attempted turn

Probability 1 - p

Anchor Points; can be used for forced turns

- Origin
- Treasure (exit)

Reminder: New Upper bounds
 One Deterministic p-Faulty Searcher

Complementary Observations

- No continuity at $p=0$
- No algorithm for one p-faulty searcher has CR better than 4.59112
- Every algorithm for one p-faulty searcher has $C R$ at least $\Omega\left(\frac{1}{1-2 p}\right)$

Probabilistic Faultiness A Curse and a Blessing

- Observation 1
- Expected time of returning to origin?
- Searcher needs $2 d$ time to learn if turn was successful.
- Divergence if $p \geq 1 / 2$.

- Observation 2
- Attempt multiple turns close to origin to collect random bits. (Similar to forced turns)

Contributions \& Technicalities

- Tedious analysis: target found intentionally or unintentionally.
- Zig-zag type algo: Expand by factor g the searched space in each direction.
- Choose expansion factor $g=g(p)$ minimizing CR.

Method for leveraging \boldsymbol{p}-faults into an advantage:

- Arbitrarily close to origin
- Make repeated attempts to turn
- Use origin to determine result of Bernoulli trial; collect random bit

Presentation Outline

- Linear Search - Related Work
- New Problem \& Main Results
- Related Work
- Searching with 1 Faulty Agent: Results Outline
- Searching with 2 Faulty Agents: Results Outline
- Future Directions

p-faulty Behaviour for 2 Searchers

1-searcher specifications:

- No orientation
- Every attempt to turn is independent Bernoulli Trial with success $1-p$.
- Searcher not aware if turn is successful
- Unlimited attempts, whenever.

Probability p

Probability $1-p \Longrightarrow$
Anchor Points; can be used for forced turns

- Origin
- Treasure (exit)

p-faulty Behaviour for 2 Searchers

2-searcher specifications:

- Searchers can act as anchor points.

Simple Corollaries:

- 2 agents can perform forced turns.
- 2 agents can simulate opt 1-agent deterministic algorithm.
- After collecting enough many random bits, 2 agents can simulate opt 1-agent randomized algorithm.

Proof of Theorem

Two p-faulty wireless searchers can evacuate with expected competitive ratio

$$
3+4 \sqrt{p(1-p)}+\epsilon
$$

For every $\epsilon>0$, and with any concentration.

- Leader performs forced turn using target.
- Follower attempts to turn and switches to speed $s=s(p)$.
- Upon meeting again, agents perform forced turn and return to target.

Presentation Outline

- Linear Search - Related Work
- New Problem \& Main Results
- Related Work
- Searching with 1 Faulty Agent: Results Outline
- Searching with 2 Faulty Agents: Results Outline
- Future Directions

Future Directions

- (Better) Lower Bounds for p-faulty agents?
- Other type of faults \& domains?
- Communication faults?
- Fleet of searchers \& faults.

Thanks!

