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A riddle

Given a black box which computes a function f with error € in the
XOR model, how much do you need to communicate to compute f
with error ¢ < €?
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First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. > 1 —e.
Probability of a correct majority?

Probability of a correct constant fraction?

(Chernoff bound)
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First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. > 1 —e.
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1st answer to the riddle

N RCTN
A : B

a-/ a®b= f(z,y) \vb

(w.p. 1—€)
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1. Use the black boxes C. o € @< > times, store results,

2. Alice sends all her a;'s to Bob,
3. Bob finds most common value z € {0, 1}* for a; @ b;.
4. Alice outputs the all-0 k-bit string, Bob outputs z.

Complexity: C . - k.
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Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

a®b=adb & aGa=bob

runs have same output Alice’s side  Bob’s side

Find runs which output the same thing with a protocol for Equality
(costs O(log(1/€)) for error €)

2nd answer to the riddle: O(Cf’e, ~ Iog(Cf’E,/e’)>

No dependence on k, Alice and Bob oblivious to f(x, y).



Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP])

Solving t instances of Equality with error ¢ can be done in
O(t + log(1/€)) communication complexity.
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Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.
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Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])
® G(n,p): graph with n vertices, each edge picked w.p. p
® [1(G): size of the largest connected component of G.

® o €[0,1] and c € RT

Pr{L1(G(n, c/n) < (1 — a)n] < e(M@=5(1=5)e)n

In particular, goes to 0 exponentially fast with n if ac > 41In(2).
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Why the riddle?

o3 )

Theorem (Usual error reduction [folklore, KN'97])
Let e > € >0 and M € {open,loc, B, A}, then:

Re/’\/t(f) < Ce,e’ : Ré/\/l(f)
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Theorem (Usual error reduction [folklore, KN'97])
Let e > € >0 and M € {open,loc, B, A}, then:

Re/’\/t(f) < Ce,e’ : Ré/\/l(f)

Theorem (XOR error reduction)
Let € > € > 0, then:

Rf’or(f) < CE,E’ : (Rfor(f)) + O(Ce,e’)-
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Communication complexity: protocol tree

® Nodes are partitioned between Alice and Bob.
® A node's owner decides whether to go left or right from there.

® The process is unambiguous.



An ambiguity in the model.
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Consider the function idg(x,y) = y.
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Who outputs the result matters.



Nothing new

The observation that 'who outputs’ matters is nothing new.
® Sending a message [Shannon’48]
e NBA problem [Orlitsky'90]

e Compression to information [BR'14, BBCR'13, BMY'15,
Sherstov'18, BK'18]
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However...

® _.never systematically studied?
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Adapted tree definition

Leaves are now labeled by an output mechanism:
® |t may be an output
® |t may be a function of one of the player's input (if one player
outputs)
® |t may be two functions of the player's inputs (in which case
the two players output something)
We define different models of communication complexity, with the
measures:

deterministic communication complexity of
o DM(f) = predy

f in model M.

randomized communication complexity of f

M _
* R(F) = in model M with error < e.
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