The communication complexity of functions with large outputs

Lila Fontes ${ }^{1}$, Sophie Laplante ${ }^{2}$, Mathieu Laurière ${ }^{3}$, and Alexandre Nolin ${ }^{4}$
${ }^{1}$ Swarthmore College ${ }^{2}$ Université Paris Cité ${ }^{3}$ NYU Shanghai ${ }^{4}$ CISPA SIROCCO 2023

2-party communication complexity [Yao79]

$$
x, y \in\{0,1\}^{n}, \quad f(x, y) \in\{0,1\}^{k}
$$

2-party communication complexity [Yao79]

$$
x, y \in\{0,1\}^{n}, \quad f(x, y) \in\{0,1\}^{k}
$$

We only charge for the amount of communication.

2-party communication complexity [Yao79]

$$
x, y \in\{0,1\}^{n}, \quad f(x, y) \in\{0,1\}^{k}
$$

We only charge for the amount of communication.

A riddle

Given a black box which computes a function f with error ϵ in the XOR model, how much do you need to communicate to compute f with error $\epsilon^{\prime}<\epsilon$?

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. $\geq 1-\epsilon$.
Probability of a correct majority?
Probability of a correct constant fraction?
(Chernoff bound)

$$
\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i=1}^{t} X_{i}-p\right| \geq \delta\right] \leq e^{-\frac{\delta^{2} n}{2 t(1-p)}}
$$

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. $\geq 1-\epsilon$.
Probability of a correct majority? $\geq 1-\exp \left(-\Omega\left(\frac{t}{(1 / 2-\epsilon)^{2}}\right)\right)$
Probability of a correct constant fraction?
(Chernoff bound)

$$
\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i=1}^{t} X_{i}-p\right| \geq \delta\right] \leq e^{-\frac{\delta^{2} n}{2 t(1-p)}}
$$

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. $\geq 1-\epsilon$.
Probability of a correct majority? $\geq 1-\exp \left(-\Omega\left(\frac{t}{(1 / 2-\epsilon)^{2}}\right)\right)$
Probability of a correct constant fraction? $\geq 1-\exp (-\Omega(t))$
(Chernoff bound)

$$
\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i=1}^{t} X_{i}-p\right| \geq \delta\right] \leq e^{-\frac{\delta^{2} n}{2 t(1-p)}}
$$

1st answer to the riddle

1. Use the black boxes $C_{\epsilon, \epsilon^{\prime}} \in \Theta\left(\frac{\epsilon \cdot \ln \left(\frac{1}{\epsilon^{\prime}}\right)}{\left(\frac{1}{2}-\epsilon\right)^{2}}\right)$ times, store results,
2. Alice sends all her a_{i} 's to Bob,
3. Bob finds most common value $z \in\{0,1\}^{k}$ for $a_{i} \oplus b_{i}$.
4. Alice outputs the all- $0 k$-bit string, Bob outputs z.

Complexity: $C_{\epsilon, \epsilon^{\prime}} \cdot k$.

1st answer to the riddle

1. Use the black boxes $C_{\epsilon, \epsilon^{\prime}} \in \Theta\left(\frac{\epsilon \cdot \ln \left(\frac{1}{\epsilon^{\prime}}\right)}{\left(\frac{1}{2}-\epsilon\right)^{2}}\right)$ times, store results,
2. Alice sends all her a_{i} 's to Bob,
3. Bob finds most common value $z \in\{0,1\}^{k}$ for $a_{i} \oplus b_{i}$.
4. Alice outputs the all-0 k-bit string, Bob outputs z.

Complexity: $C_{\epsilon, \epsilon^{\prime}} \cdot k . \odot$

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
a_{1} \oplus b_{1}=a_{2} \oplus b_{2} \quad \Leftrightarrow \quad a_{1} \oplus a_{2}=b_{1} \oplus b_{2}
$$

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
\underbrace{a_{1} \oplus b_{1}=a_{2} \oplus b_{2}} \quad \Leftrightarrow \quad a_{1} \oplus a_{2}=b_{1} \oplus b_{2}
$$

runs have same output

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
\underbrace{a_{1} \oplus b_{1}=a_{2} \oplus b_{2}}_{\text {runs have same output }}
$$

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
\underbrace{a_{1} \oplus b_{1}=a_{2} \oplus b_{2}}_{\text {runs have same output }} \quad \Leftrightarrow \quad \underbrace{a_{1} \oplus a_{2}}_{\text {Alice's side }}=\underbrace{b_{1} \oplus b_{2}}_{\text {Bob's side }}
$$

Find runs which output the same thing with a protocol for Equality (costs $O(\log (1 / \epsilon))$ for error ϵ)

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
\underbrace{a_{1} \oplus b_{1}=a_{2} \oplus b_{2}}_{\text {runs have same output }} \quad \Leftrightarrow \quad \underbrace{a_{1} \oplus a_{2}}_{\text {Alice's side }}=\underbrace{b_{1} \oplus b_{2}}_{\text {Bob's side }}
$$

Find runs which output the same thing with a protocol for Equality (costs $O(\log (1 / \epsilon))$ for error ϵ)

2nd answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}^{2} \cdot \log \left(C_{\epsilon, \epsilon^{\prime}}^{2} / \epsilon^{\prime}\right)\right)$

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
\underbrace{a_{1} \oplus b_{1}=a_{2} \oplus b_{2}}_{\text {runs have same output }} \quad \Leftrightarrow \quad \underbrace{a_{1} \oplus a_{2}}_{\text {Alice's side }}=\underbrace{b_{1} \oplus b_{2}}_{\text {Bob's side }}
$$

Find runs which output the same thing with a protocol for Equality (costs $O(\log (1 / \epsilon))$ for error ϵ)

2nd answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}^{2} \cdot \log \left(C_{\epsilon, \epsilon^{\prime}}^{2} / \epsilon^{\prime}\right)\right) \odot$

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a_{1}, b_{1} and a_{2}, b_{2}.

$$
\underbrace{a_{1} \oplus b_{1}=a_{2} \oplus b_{2}}_{\text {runs have same output }}
$$

Find runs which output the same thing with a protocol for Equality (costs $O(\log (1 / \epsilon))$ for error ϵ)

2nd answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}^{2} \cdot \log \left(C_{\epsilon, \epsilon^{\prime}}^{2} / \epsilon^{\prime}\right)\right)$ O
No dependence on k, Alice and Bob oblivious to $f(x, y)$.

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP])
Solving t instances of Equality with error ϵ can be done in $O(t+\log (1 / \epsilon))$ communication complexity.

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t+\log (1 / \epsilon))$ communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each instance. Costs t communication and half the non-equal instances are found in expectation. As the algorithm progresses, less and less remain to be found.

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t+\log (1 / \epsilon))$ communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each instance. Costs t communication and half the non-equal instances are found in expectation. As the algorithm progresses, less and less remain to be found.

3rd answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}^{2}+\log \left(1 / \epsilon^{\prime}\right)\right)$

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t+\log (1 / \epsilon))$ communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each instance. Costs t communication and half the non-equal instances are found in expectation. As the algorithm progresses, less and less remain to be found.

3rd answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}^{2}+\log \left(1 / \epsilon^{\prime}\right)\right)$

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.A○○○○○

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.AOOOOO
BO○○○ О

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.$$
\begin{aligned}
& \text { AOOOOOOOOOOOOO }
\end{aligned}
$$

Fourth remark: eliminate most candidates fast In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.

Fourth remark: eliminate most candidates fast In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.$$
\begin{aligned}
& \text { AOOO○O○○○○○○○○ } \\
& \mathrm{BO} O \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
\end{aligned}
$$

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.
Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.$$
\begin{aligned}
& \mathbf{B} \bigcirc \bigcirc
\end{aligned}
$$

4th answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}+\log ^{2}\left(1 / \epsilon^{\prime}\right)\right)$

Fourth remark: eliminate most candidates fast

 In a batch of $\Theta\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ runs, $>1 / 3$ should be the correct output, w.p. $\geq 1-\epsilon^{\prime}$.

4th answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}+\log ^{2}\left(1 / \epsilon^{\prime}\right)\right)$

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])

- $G(n, p)$: graph with n vertices, each edge picked w.p. p
- $L_{1}(G)$: size of the largest connected component of G.
- $\alpha \in[0,1]$ and $c \in \mathbb{R}^{+}$

$$
\operatorname{Pr}\left[L_{1}(G(n, c / n)<(1-\alpha) n] \leq e^{\left(\ln (2)-\frac{\alpha}{2}\left(1-\frac{\alpha}{2}\right) c\right) n}\right.
$$

In particular, goes to 0 exponentially fast with n if $\alpha c>4 \ln (2)$.

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])

- $G(n, p)$: graph with n vertices, each edge picked w.p. p
- $L_{1}(G)$: size of the largest connected component of G.
- $\alpha \in[0,1]$ and $c \in \mathbb{R}^{+}$

$$
\operatorname{Pr}\left[L_{1}(G(n, c / n)<(1-\alpha) n] \leq e^{\left(\ln (2)-\frac{\alpha}{2}\left(1-\frac{\alpha}{2}\right) c\right) n}\right.
$$

In particular, goes to 0 exponentially fast with n if $\alpha c>4 \ln (2)$.
last answer to the riddle:

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])

- $G(n, p)$: graph with n vertices, each edge picked w.p. p
- $L_{1}(G)$: size of the largest connected component of G.
- $\alpha \in[0,1]$ and $c \in \mathbb{R}^{+}$

$$
\operatorname{Pr}\left[L_{1}(G(n, c / n)<(1-\alpha) n] \leq e^{\left(\ln (2)-\frac{\alpha}{2}\left(1-\frac{\alpha}{2}\right) c\right) n}\right.
$$

In particular, goes to 0 exponentially fast with n if $\alpha c>4 \ln (2)$.
last answer to the riddle: $O\left(C_{\epsilon, \epsilon^{\prime}}\right)=O\left(\frac{\epsilon \cdot \ln \left(\frac{1}{\epsilon^{\prime}}\right)}{\left(\frac{1}{2}-\epsilon\right)^{2}}\right)$ ن)

Why the riddle?

$$
C_{\epsilon, \epsilon^{\prime}} \in \Theta\left(\frac{\epsilon \cdot \ln \left(\frac{1}{\epsilon^{\prime}}\right)}{\left(\frac{1}{2}-\epsilon\right)^{2}}\right)
$$

Theorem (Usual error reduction [folklore, KN'97])
Let $\epsilon>\epsilon^{\prime}>0$ and $\mathcal{M} \in\{$ open, loc, $\mathrm{B}, \mathrm{A}\}$, then:

$$
R_{\epsilon^{\prime}}^{\mathcal{M}}(f) \leq C_{\epsilon, \epsilon^{\prime}} \cdot R_{\epsilon}^{\mathcal{M}}(f)
$$

Why the riddle?

$$
C_{\epsilon, \epsilon^{\prime}} \in \Theta\left(\frac{\epsilon \cdot \ln \left(\frac{1}{\epsilon^{\prime}}\right)}{\left(\frac{1}{2}-\epsilon\right)^{2}}\right)
$$

Theorem (Usual error reduction [folklore, KN'97])
Let $\epsilon>\epsilon^{\prime}>0$ and $\mathcal{M} \in\{$ open, loc, $\mathrm{B}, \mathrm{A}\}$, then:

$$
R_{\epsilon^{\prime}}^{\mathcal{M}}(f) \leq C_{\epsilon, \epsilon^{\prime}} \cdot R_{\epsilon}^{\mathcal{M}}(f) .
$$

Theorem (XOR error reduction)
Let $\epsilon>\epsilon^{\prime}>0$, then:

$$
R_{\epsilon^{\prime}}^{\mathrm{xor}}(f) \leq C_{\epsilon, \epsilon^{\prime}} \cdot\left(R_{\epsilon}^{\mathrm{xor}}(f)\right)+O\left(C_{\epsilon, \epsilon^{\prime}}\right) .
$$

Communication complexity: protocol tree

- Nodes are partitioned between Alice and Bob.

Communication complexity: protocol tree

- Nodes are partitioned between Alice and Bob.
- A node's owner decides whether to go left or right from there.

Communication complexity: protocol tree

- Nodes are partitioned between Alice and Bob.
- A node's owner decides whether to go left or right from there.
- The process is unambiguous.

An ambiguity in the model.

Consider the function $\operatorname{id}_{B}(x, y)=y$.

An ambiguity in the model.

Consider the function $\operatorname{id}_{B}(x, y)=y$.

An ambiguity in the model.

Consider the function $i d_{B}(x, y)=y$.

Who outputs the result matters.

Nothing new

The observation that 'who outputs' matters is nothing new.

- Sending a message [Shannon'48]
- NBA problem [Orlitsky'90]
- Compression to information [BR'14, BBCR'13, BMY'15, Sherstov'18, BK'18]

Nothing new

The observation that 'who outputs' matters is nothing new.

- Sending a message [Shannon'48]
- NBA problem [Orlitsky'90]
- Compression to information [BR'14, BBCR'13, BMY'15, Sherstov'18, BK'18]
However...
- ...never systematically studied?

Adapted tree definition

Leaves are now labeled by an output mechanism:

- It may be an output
- It may be a function of one of the player's input (if one player outputs)
- It may be two functions of the player's inputs (in which case the two players output something)
We define different models of communication complexity, with the measures:
- $D^{\mathcal{M}}(f)=$ deterministic communication complexity of
- $R_{\epsilon}^{\mathcal{M}}(f)=\begin{aligned} & \text { randomized communication complexity of } f \\ & \text { in model } \mathcal{M} \text { with error } \leq \epsilon .\end{aligned}$

Models

Thanks!

