The communication complexity of
functions with large outputs

Lila Fontes 1, Sophie Laplante 2, Mathieu Lauriere 3, and
Alexandre Nolin #

1 Swarthmore College 2 Université Paris Cité 3 NYU Shanghai 4 CISPA

SIROCCO 2023

2-party communication complexity [Yao79]

A : B

v

A

v

\'f (,y)

x,y €{0,1}", f(x,y) € {0,1}*

https://doi.org/10.1145/800135.804414

2-party communication complexity [Yao79]

A : B

v

A

v

\'f (,y)

x,y €{0,1}", f(x,y) € {0,1}*

We only charge for the amount of communication.

https://doi.org/10.1145/800135.804414

2-party communication complexity [Yao79]

A : B

v

A

v

K'f (,y)

x,y €{0,1}", f(x,y) € {0,1}*

We only charge for the amount of communication.

R.(f) < D(f) € [0, n]
—_—

public-coin randomized complexity deterministic complexity

https://doi.org/10.1145/800135.804414

A riddle

Given a black box which computes a function f with error € in the
XOR model, how much do you need to communicate to compute f
with error ¢ < €?

1—e€

. A0y Db . ..
o~ e B

»
>

A : B

aJ a®b= f(x,y) \-b

(w.p. 1—€)

A
ceoe

v

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. > 1 —e.
Probability of a correct majority?

Probability of a correct constant fraction?

(Chernoff bound)

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. > 1 —e.
Probability of a correct majority? > 1 — exp(—Q(W))
Probability of a correct constant fraction?

(Chernoff bound)

|

t

1 _ &%

n 5 X;—p'2<5] <e 21-p) v
i=1

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. > 1 —e.
Probability of a correct majority? > 1 — exp(—Q(W))
Probability of a correct constant fraction? > 1 — exp(—Q(t))

(Chernoff bound)

1st answer to the riddle

N RCTN
A : B

a-/ a®b= f(z,y) \vb

(w.p. 1—€)

6'”(%’2
(3-)

1. Use the black boxes C. o € @< > times, store results,

2. Alice sends all her a;'s to Bob,
3. Bob finds most common value z € {0, 1}* for a; @ b;.
4. Alice outputs the all-0 k-bit string, Bob outputs z.

Complexity: C . - k.

1st answer to the riddle

N RCTN
A : B

a-/ a®b= f(z,y) \vb

(w.p. 1—€)

6'”(%’2
(3-)

1. Use the black boxes C. o € @< > times, store results,

2. Alice sends all her a;'s to Bob,
3. Bob finds most common value z € {0, 1}* for a; @ b;.
4. Alice outputs the all-0 k-bit string, Bob outputs z.

Complexity: C . - k.

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes ai, by and ap, bs.

a1 Db =adb @ a1DPa=b Db

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

al@blzag@bz @ al@azzbl@b2

runs have same output

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

a®b=adb & aGa=bob

runs have same output Alice’s side Bob’s side

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

a®b=adb & aGa=bob

runs have same output Alice’s side Bob’s side

Find runs which output the same thing with a protocol for Equality
(costs O(log(1/€)) for error €)

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

a®b=adb & aGa=bob

runs have same output Alice’s side Bob’s side

Find runs which output the same thing with a protocol for Equality
(costs O(log(1/€)) for error €)

2nd answer to the riddle: O(Cée, : Iog(Cf’E,/e’)>

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

a®b=adb & aGa=bob

runs have same output Alice’s side Bob’s side

Find runs which output the same thing with a protocol for Equality
(costs O(log(1/€)) for error €)

2nd answer to the riddle: O<C§61 ~ Iog(Cf’E,/e’)>

Second remark: finding runs with equal output

Take two sets of ouputs of the blackboxes a1, by and ap, bs.

a®b=adb & aGa=bob

runs have same output Alice’s side Bob’s side

Find runs which output the same thing with a protocol for Equality
(costs O(log(1/€)) for error €)

2nd answer to the riddle: O(Cf’e, ~ Iog(Cf’E,/e’)>

No dependence on k, Alice and Bob oblivious to f(x, y).

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP])

Solving t instances of Equality with error ¢ can be done in
O(t + log(1/€)) communication complexity.

https://doi.org/10.1137/20M1326040

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP])

Solving t instances of Equality with error ¢ can be done in
O(t + log(1/€)) communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each
instance. Costs t communication and half the non-equal instances
are found in expectation. As the algorithm progresses, less and less
remain to be found.

https://doi.org/10.1137/20M1326040

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP])

Solving t instances of Equality with error ¢ can be done in
O(t + log(1/€)) communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each
instance. Costs t communication and half the non-equal instances
are found in expectation. As the algorithm progresses, less and less
remain to be found.

3rd answer to the riddle: O(Cse, + Iog(l/e’))

https://doi.org/10.1137/20M1326040

Third remark: batch equality

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP])

Solving t instances of Equality with error ¢ can be done in
O(t + log(1/€)) communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each
instance. Costs t communication and half the non-equal instances
are found in expectation. As the algorithm progresses, less and less
remain to be found.

3rd answer to the riddle: O(Cse, + Iog(l/ﬁ’))

https://doi.org/10.1137/20M1326040

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

AOOOOO

BOOOOO

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

log %

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

AO@®@0O0OO

BO@®@OOO

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

AO OO

BO OO

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

AO O O ONONONONONONONONONO)

BO © O OOOC@
2

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

A ©) ONONONG

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

AO ONONONG

B O Q00O

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

AO O O 0000000000

BO OO 0000000000

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

A ©) (ON© 000

B o (ON© 000

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

A ©) (ON© 000

B o (ON© 000

4th answer to the riddle: O(C.. + log?(1/¢'))

Fourth remark: eliminate most candidates fast

In a batch of ©(log(1/¢’)) runs, > 1/3 should be the correct
output, w.p. > 1—¢.

A ©) (ON© 000

B o (ON© 000

4th answer to the riddle: O(C.. + log?(1/¢'))

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])
® G(n,p): graph with n vertices, each edge picked w.p. p
® [1(G): size of the largest connected component of G.

® o €[0,1] and c € RT

Pr{L1(G(n, c/n) < (1 — a)n] < e(M@=5(1=5)e)n

In particular, goes to 0 exponentially fast with n if ac > 41In(2).

https://doi.org/10.1515/9781400841356.38

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

O O O
O o O O
O o O O
O O
© O O

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

e
%

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])
® G(n,p): graph with n vertices, each edge picked w.p. p
® [1(G): size of the largest connected component of G.

® o €[0,1] and c € RT

Pr{L1(G(n, c/n) < (1 — a)n] < e(M@=5(1=5)e)n

In particular, goes to 0 exponentially fast with n if ac > 41In(2).

last answer to the riddle:

https://doi.org/10.1515/9781400841356.38

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])
® G(n,p): graph with n vertices, each edge picked w.p. p
® [1(G): size of the largest connected component of G.

® o €[0,1] and c € RT

Pr{L1(G(n, c/n) < (1 — a)n] < e(M@=5(1=5)e)n

In particular, goes to 0 exponentially fast with n if ac > 41In(2).

last answer to the riddle: O(C..) = O<6(Iln(3')2>
5—¢

https://doi.org/10.1515/9781400841356.38

Why the riddle?

o3)

Theorem (Usual error reduction [folklore, KN'97])
Let e > € >0 and M € {open,loc, B, A}, then:

Re/’\/t(f) < Ce,e’ : Ré/\/l(f)

https://doi.org/10.1017/CBO9780511574948

Why the riddle?

o3)

Theorem (Usual error reduction [folklore, KN'97])
Let e > € >0 and M € {open,loc, B, A}, then:

Re/’\/t(f) < Ce,e’ : Ré/\/l(f)

Theorem (XOR error reduction)
Let € > € > 0, then:

Rf’or(f) < CE,E’ : (Rfor(f)) + O(Ce,e’)-

https://doi.org/10.1017/CBO9780511574948

Communication complexity: protocol tree

® Nodes are partitioned between Alice and Bob.

Communication complexity: protocol tree

® Nodes are partitioned between Alice and Bob.

® A node's owner decides whether to go left or right from there.

Communication complexity: protocol tree

® Nodes are partitioned between Alice and Bob.
® A node's owner decides whether to go left or right from there.

® The process is unambiguous.

An ambiguity in the model.

Consider the function idg(x,y) = y.

Y

B

VS

e
A %) B
)

Y

An ambiguity in the model.

Consider the function idg(x,y) = y.

B

VS

An ambiguity in the model.

Consider the function idg(x,y) = y.

B

VS

Who outputs the result matters.

Nothing new

The observation that 'who outputs’ matters is nothing new.
® Sending a message [Shannon’48]
e NBA problem [Orlitsky'90]

e Compression to information [BR'14, BBCR'13, BMY'15,
Sherstov'18, BK'18]

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/18.57210
https://doi.org/10.1109/TIT.2014.2347282
https://doi.org/10.1137/100811969
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.481
https://doi.org/10.1137/16M109380X
https://doi.org/10.1145/3188745.3188956

Nothing new

The observation that 'who outputs’ matters is nothing new.
® Sending a message [Shannon’48]
e NBA problem [Orlitsky'90]

e Compression to information [BR'14, BBCR'13, BMY'15,
Sherstov'18, BK'18]

However...

® _.never systematically studied?

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/18.57210
https://doi.org/10.1109/TIT.2014.2347282
https://doi.org/10.1137/100811969
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.481
https://doi.org/10.1137/16M109380X
https://doi.org/10.1145/3188745.3188956

Adapted tree definition

Leaves are now labeled by an output mechanism:
® |t may be an output
® |t may be a function of one of the player's input (if one player
outputs)
® |t may be two functions of the player's inputs (in which case
the two players output something)
We define different models of communication complexity, with the
measures:

deterministic communication complexity of
o DM(f) = predy

f in model M.

randomized communication complexity of f

M _
* R(F) = in model M with error < e.

Models

open ——p local é:unilateral —— l-out-of-2 ——p split ——p XOR
“bob;

The communication complexity of,functions with large outputs — L. Fontes, S. Laplante, M. Lauri¢re, and A. Nolin - 15/15

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR
i} "
™ -
PE—
A : B

Models

-alice:

/

open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR

“bob!

b

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR
ﬁ ':‘b ob';“
™ -
_—
PE—
A : B

f(z, y)/ \\f (z,y)

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR
.'“b ob';“ ﬁ
™ -
_—
PE—
A : B

fo’ Seflry)

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR
.'“b ob';“ ﬁ
™ -
_—
PE—
A : B

fa g Ny

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR
.'“b ob';: ﬁ
™ -
_—
PE—
A : B

a/ axb= f(x,y) \\>b

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR

“bob:
. y
N .
A : B

a‘/// [oe[e[1Te[1]0[0} {e[1[i[e[0[e[e]e] \\\sb

[ol1[1T1]o[1]0l0]

Models

alice,
open —p local i:unilateralﬁ l-out-of-2 ——p split ——p XOR
.'“b ob_f‘ ﬁ
™ -
_—
PE—
A : B

Models

ahC(‘ ' interesting region
. 1
a]
open ——p local }:unilateral4>:1-out-0f—24> split —— XOR
RS : i}
“bob; ,
™ -
_—
P ——

Models

ahc(‘ 1 interesting region :

/4 : ! '

. : ' 1

open — local : ‘—unilateral 4>:1-0ut-0f—2 —» split —» XOR:
\ f ! '

) ; : 1

bob f !

A : B

a</ a®b= f(z,y) \\>b
Thanks!

