The communication complexity of functions with large outputs

Lila Fontes ¹, Sophie Laplante ², Mathieu Laurière ³, and Alexandre Nolin ⁴

 $^{\rm 1}$ Swarthmore College $^{\rm 2}$ Université Paris Cité $^{\rm 3}$ NYU Shanghai $^{\rm 4}$ CISPA

SIROCCO 2023

2-party communication complexity [Yao79]

$$x, y \in \{0, 1\}^n, \qquad f(x, y) \in \{0, 1\}^k$$

2-party communication complexity [Yao79]

$$x, y \in \{0, 1\}^n, \qquad f(x, y) \in \{0, 1\}^k$$

We only charge for the amount of communication.

2-party communication complexity [Yao79]

$$x, y \in \{0, 1\}^n, \quad f(x, y) \in \{0, 1\}^k$$

We only charge for the amount of communication.

$$\underbrace{R_{\epsilon}(f)}_{\text{public-coin randomized complexity}} \leq \underbrace{D(f)}_{\text{deterministic complexity}} \in [0,n]$$

A riddle

Given a black box which computes a function f with error ϵ in the XOR model, how much do you need to communicate to compute f with error $\epsilon' < \epsilon$?

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. $\geq 1 - \epsilon$.

Probability of a correct majority?

Probability of a correct constant fraction?

(Chernoff bound)

$$\Pr\left[\left|\frac{1}{t}\sum_{i=1}^{t}X_{i}-p\right|\geq\delta
ight]\leq e^{-rac{\delta^{2}n}{2t(1-p)}}$$

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. $\geq 1 - \epsilon$.

Probability of a correct majority? $\geq 1 - \exp\Bigl(-\Omega\Bigl(rac{t}{(1/2-\epsilon)^2}\Bigr)\Bigr)$

Probability of a correct constant fraction?

(Chernoff bound)

$$\Pr\left[\left|\frac{1}{t}\sum_{i=1}^{t}X_{i}-p\right| \geq \delta\right] \leq e^{-\frac{\delta^{2}n}{2t(1-p)}}$$

First remark: correctness of blackboxes?

A single box / in expectation: correct w.p. $\geq 1 - \epsilon$.

Probability of a correct majority?
$$\geq 1 - \exp\Bigl(-\Omega\Bigl(rac{t}{(1/2-\epsilon)^2}\Bigr)\Bigr)$$

Probability of a correct constant fraction? $\geq 1 - \exp(-\Omega(t))$

(Chernoff bound)

$$\Pr\left[\left|\frac{1}{t}\sum_{i=1}^{t}X_{i}-p\right| \geq \delta\right] \leq e^{-\frac{\delta^{2}n}{2t(1-p)}}$$

1st answer to the riddle

- 1. Use the black boxes $C_{\epsilon,\epsilon'}\in\Theta\left(rac{\epsilon\cdot\ln\left(rac{1}{\epsilon'}
 ight)}{\left(rac{1}{2}-\epsilon
 ight)^2}
 ight)$ times, store results,
- 2. Alice sends all her a_i 's to Bob,
- 3. Bob finds most common value $z \in \{0,1\}^k$ for $a_i \oplus b_i$.
- 4. Alice outputs the all-0 k-bit string, Bob outputs z.

Complexity: $C_{\epsilon,\epsilon'} \cdot k$.

1st answer to the riddle

- 1. Use the black boxes $C_{\epsilon,\epsilon'}\in\Theta\left(rac{\epsilon\cdot\ln\left(rac{1}{\epsilon'}
 ight)}{\left(rac{1}{2}-\epsilon
 ight)^2}
 ight)$ times, store results,
- 2. Alice sends all her a_i 's to Bob,
- 3. Bob finds most common value $z \in \{0,1\}^k$ for $a_i \oplus b_i$.
- 4. Alice outputs the all-0 k-bit string, Bob outputs z.

Complexity: $C_{\epsilon,\epsilon'} \cdot k$.

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$a_1 \oplus b_1 = a_2 \oplus b_2$$
 \iff $a_1 \oplus a_2 = b_1 \oplus b_2$

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$\underbrace{a_1 \oplus b_1 = a_2 \oplus b_2}_{\text{runs have same output}} \qquad \Longleftrightarrow \qquad a_1 \oplus a_2 = b_1 \oplus b_2$$

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$\underbrace{a_1 \oplus b_1 = a_2 \oplus b_2}_{\text{runs have same output}} \qquad \Longleftrightarrow \qquad \underbrace{a_1 \oplus a_2}_{\text{Alice's side}} = \underbrace{b_1 \oplus b_2}_{\text{Bob's side}}$$

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$\underbrace{a_1 \oplus b_1 = a_2 \oplus b_2}_{\text{runs have same output}} \qquad \Longleftrightarrow \qquad \underbrace{a_1 \oplus a_2}_{\text{Alice's side}} = \underbrace{b_1 \oplus b_2}_{\text{Bob's side}}$$

Find runs which output the same thing with a protocol for Equality (costs $O(\log(1/\epsilon))$ for error ϵ)

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$\underline{a_1 \oplus b_1 = a_2 \oplus b_2}$$
 \Leftrightarrow $\underline{a_1 \oplus a_2} = \underline{b_1 \oplus b_2}$ runs have same output Alice's side Bob's side

Find runs which output the same thing with a protocol for Equality (costs $O(\log(1/\epsilon))$ for error ϵ)

2nd answer to the riddle: $O\left(C_{\epsilon,\epsilon'}^2 \cdot \log(C_{\epsilon,\epsilon'}^2/\epsilon')\right)$

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$\underline{a_1 \oplus b_1 = a_2 \oplus b_2}$$
 \Leftrightarrow $\underline{a_1 \oplus a_2} = \underline{b_1 \oplus b_2}$ runs have same output Alice's side Bob's side

Find runs which output the same thing with a protocol for Equality (costs $O(\log(1/\epsilon))$ for error ϵ)

2nd answer to the riddle:
$$O\left(C_{\epsilon,\epsilon'}^2 \cdot \log(C_{\epsilon,\epsilon'}^2/\epsilon')\right)$$

Take two sets of ouputs of the blackboxes a_1 , b_1 and a_2 , b_2 .

$$\underline{a_1 \oplus b_1 = a_2 \oplus b_2}$$
 \Leftrightarrow $\underline{a_1 \oplus a_2} = \underline{b_1 \oplus b_2}$ runs have same output Alice's side Bob's side

Find runs which output the same thing with a protocol for Equality (costs $O(\log(1/\epsilon))$ for error ϵ)

2nd answer to the riddle:
$$O\left(C_{\epsilon,\epsilon'}^2 \cdot \log(C_{\epsilon,\epsilon'}^2/\epsilon')\right)$$

No dependence on k, Alice and Bob oblivious to f(x, y).

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t + \log(1/\epsilon))$ communication complexity.

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t + \log(1/\epsilon))$ communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each instance. Costs *t* communication and half the non-equal instances are found in expectation. As the algorithm progresses, less and less remain to be found.

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t + \log(1/\epsilon))$ communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each instance. Costs *t* communication and half the non-equal instances are found in expectation. As the algorithm progresses, less and less remain to be found.

3rd answer to the riddle: $O\Big(C_{\epsilon,\epsilon'}^2 + \log(1/\epsilon')\Big)$

Theorem (Optimal batch equality [HPZZ'21, SIAM J COMP]) Solving t instances of Equality with error ϵ can be done in $O(t + \log(1/\epsilon))$ communication complexity.

Intuitive idea: suppose a 1-bit hash gets computed for each instance. Costs *t* communication and half the non-equal instances are found in expectation. As the algorithm progresses, less and less remain to be found.

3rd answer to the riddle:
$$O\left(C_{\epsilon,\epsilon'}^2 + \log(1/\epsilon')\right)$$

$$B \bigcirc O \bigcirc O \bigcirc O$$

In a batch of $\Theta(\log(1/\epsilon'))$ runs, > 1/3 should be the correct output, w.p. $\geq 1 - \epsilon'$.

4th answer to the riddle: $O(C_{\epsilon,\epsilon'} + \log^2(1/\epsilon'))$

4th answer to the riddle:
$$O(C_{\epsilon,\epsilon'} + \log^2(1/\epsilon'))$$

Lemma (Variation of a lemma in [ER'60])

- G(n,p): graph with n vertices, each edge picked w.p. p
- $L_1(G)$: size of the largest connected component of G.
- $\alpha \in [0,1]$ and $c \in \mathbb{R}^+$

$$\Pr[L_1(G(n,c/n)<(1-\alpha)n]\leq e^{\left(\ln(2)-\frac{\alpha}{2}\left(1-\frac{\alpha}{2}\right)c\right)n}$$

In particular, goes to 0 exponentially fast with n if $\alpha c > 4 \ln(2)$.

Last optimization: largest component in random graphs

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])

- G(n,p): graph with n vertices, each edge picked w.p. p
- $L_1(G)$: size of the largest connected component of G.
- $\alpha \in [0,1]$ and $c \in \mathbb{R}^+$

$$\Pr[L_1(G(n,c/n)<(1-\alpha)n]\leq e^{\left(\ln(2)-\frac{\alpha}{2}\left(1-\frac{\alpha}{2}\right)c\right)n}$$

In particular, goes to 0 exponentially fast with n if $\alpha c > 4 \ln(2)$.

last answer to the riddle:

Last optimization: largest component in random graphs

Lemma (Variation of a lemma in [ER'60])

- G(n,p): graph with n vertices, each edge picked w.p. p
- $L_1(G)$: size of the largest connected component of G.
- $\alpha \in [0,1]$ and $c \in \mathbb{R}^+$

$$\Pr[L_1(G(n,c/n)<(1-\alpha)n]\leq e^{\left(\ln(2)-\frac{\alpha}{2}\left(1-\frac{\alpha}{2}\right)c\right)n}$$

In particular, goes to 0 exponentially fast with n if $\alpha c > 4 \ln(2)$.

last answer to the riddle:
$$O(C_{\epsilon,\epsilon'}) = O\left(\frac{\epsilon \cdot \ln\left(\frac{1}{\epsilon'}\right)}{\left(\frac{1}{2} - \epsilon\right)^2}\right)$$

Why the riddle?

$$C_{\epsilon,\epsilon'} \in \Theta\left(rac{\epsilon \cdot \ln\left(rac{1}{\epsilon'}
ight)}{\left(rac{1}{2} - \epsilon
ight)^2}
ight)$$

Theorem (Usual error reduction [folklore, KN'97])

Let $\epsilon > \epsilon' > 0$ and $\mathcal{M} \in \{\mathrm{open}, \mathrm{loc}, \mathrm{B}, \mathrm{A}\}$, then:

$$R_{\epsilon'}^{\mathcal{M}}(f) \leq C_{\epsilon,\epsilon'} \cdot R_{\epsilon}^{\mathcal{M}}(f).$$

Why the riddle?

$$C_{\epsilon,\epsilon'} \in \Theta\!\left(\!rac{\epsilon \cdot \ln\!\left(rac{1}{\epsilon'}
ight)}{\left(rac{1}{2} - \epsilon
ight)^2}
ight)$$

Theorem (Usual error reduction [folklore, KN'97])

Let $\epsilon > \epsilon' > 0$ and $\mathcal{M} \in \{\mathrm{open}, \mathrm{loc}, \mathrm{B}, \mathrm{A}\}$, then:

$$R_{\epsilon'}^{\mathcal{M}}(f) \leq C_{\epsilon,\epsilon'} \cdot R_{\epsilon}^{\mathcal{M}}(f).$$

Theorem (XOR error reduction)

Let $\epsilon > \epsilon' > 0$, then:

$$R_{\epsilon'}^{\mathrm{xor}}(f) \leq C_{\epsilon,\epsilon'} \cdot (R_{\epsilon}^{\mathrm{xor}}(f)) + O(C_{\epsilon,\epsilon'}).$$

Communication complexity: protocol tree

• Nodes are partitioned between Alice and Bob.

Communication complexity: protocol tree

- Nodes are partitioned between Alice and Bob.
- A node's owner decides whether to go left or right from there.

Communication complexity: protocol tree

- Nodes are partitioned between Alice and Bob.
- A node's owner decides whether to go left or right from there.
- The process is unambiguous.

An ambiguity in the model.

Consider the function $id_B(x, y) = y$.

An ambiguity in the model.

Consider the function $id_B(x, y) = y$.

An ambiguity in the model.

Consider the function $id_B(x, y) = y$.

Who outputs the result matters.

Nothing new

The observation that 'who outputs' matters is nothing new.

- Sending a message [Shannon'48]
- NBA problem [Orlitsky'90]
- Compression to information [BR'14, BBCR'13, BMY'15, Sherstov'18, BK'18]

Nothing new

The observation that 'who outputs' matters is nothing new.

- Sending a message [Shannon'48]
- NBA problem [Orlitsky'90]
- Compression to information [BR'14, BBCR'13, BMY'15, Sherstov'18, BK'18]

However...

...never systematically studied?

Adapted tree definition

Leaves are now labeled by an output mechanism:

- It may be an output
- It may be a function of one of the player's input (if one player outputs)
- It may be two functions of the player's inputs (in which case the two players output something)

We define different models of communication complexity, with the measures:

- $D^{\mathcal{M}}(f) = \begin{cases} \text{deterministic communication complexity of} \\ f \text{ in model } \mathcal{M}. \end{cases}$
- $R_{\epsilon}^{\mathcal{M}}(f) = \begin{array}{c} \text{randomized communication complexity of } f \\ \text{in model } \mathcal{M} \text{ with error } \leq \epsilon. \end{array}$

Thanks!