Spanning Trees with Few Branch Vertices in Graphs of Bounded Neighborhood Diversity

L.Gargano A.A.Rescigno

Department of Computer Science University of Salerno

SIROCCO, June 5-10, 2023

Minimum Branch Vertices Problem

- Given an undirected graph $G=(V, E)$, where
- V represents the set of the members of the network
- E represents the relationships among them
- A branch vertex is a vertex having degree at least three

Minimum Branch Vertices Problem

- Given an undirected graph $G=(V, E)$, where
- V represents the set of the members of the network
- E represents the relationships among them
- A branch vertex is a vertex having degree at least three

The Minimum Branch Vertices Problem is defined as follows

Minimum Branch Vertices (MBV)

Instance: A connected graph $G=(V, E)$.
Goal: Find a spanning tree of G having the smallest number $b(G)$ of branch vertices among all the spanning trees of G.

Minimum Branch Vertices Problem

- Given an undirected graph $G=(V, E)$, where
- V represents the set of the members of the network
- E represents the relationships among them
- A branch vertex is a vertex having degree at least three

The Minimum Branch Vertices Problem is defined as follows

Minimum Branch Vertices (MBV)

Instance: A connected graph $G=(V, E)$.
Goal: Find a spanning tree of G having the smallest number $b(G)$ of branch vertices among all the spanning trees of G.

Since a spanning tree without branch vertices is a Hamiltonian path of G, we have $b(G)=0$ if and only if G admits a Hamiltonian path.

Optical networks

- Wavelength-division multiplexing (WDM) technology
- One wants to minimize the number of lightsplitting switches in a light-tree

Networks operating with a wide range of frequencies

- Cognitive Radio Networks

- 5G technologies

Previous Works

- Gargano et al. [2002] proved it is NP-complete to decide whether, given a graph G and an integer k, G admits a spanning tree with at most k branch vertices, even in cubic graphs.
- Salomon [2005] proved
- the existence of an algorithm that finds a spanning tree with $O(\log |V(G)|)$ branch vertices whenever the degree of each vertex of the input graph is $\Omega(|V(G)|)$;
- an approximation factor better than $O(\log |V(G)|)$ would imply that $N P \subseteq D T I M E\left(n^{O(\log \log n)}\right)$
- Heuristics and approximation results for MBV have been presented from then on [Chimani et al. 2015, Marin 2015, Landete et al. 2017, etc.]

Parameterized Complexity

Fixed Parameter Tractable (FPT)

A problem with input size n and parameter p is called fixed parameter tractable (FPT) if it can be solved in time $f(p) \cdot n^{c}$, where f is a computable function only depending on p and c is a constant.

Parameterized Complexity

Fixed Parameter Tractable (FPT)

A problem with input size n and parameter p is called fixed parameter tractable (FPT) if it can be solved in time $f(p) \cdot n^{c}$, where f is a computable function only depending on p and c is a constant.

Parameters:

- treewidth, rankwidth, and vertex cover: computing them is NP-hard
- clique-width: computing it is still an open problem
- modular width, neighborhood diversity: computable in polynomial time

MBV and parameterized complexity

- MBV is FPT with respect to treewidth [Baste et al., 2022]
- Hamiltonian Path problem (MBV special case) is W[1]-hard when parametetized by cliquewidth [Fomin et al., 2010]
- Hamiltonian Path problem is FPT with respect to modular-width [Gajarský et al., 2013]

MBV and parameterized complexity

- MBV is FPT with respect to treewidth [Baste et al., 2022]
- Hamiltonian Path problem (MBV special case) is W[1]-hard when parametetized by cliquewidth [Fomin et al., 2010]
- Hamiltonian Path problem is FPT with respect to modular-width [Gajarský et al., 2013]

We study the MBV problem with respect to neighborhood diversity and prove

Theorem 1

The Minimum Branch Vertices spanning tree problem is FPT when parameterized by neighborhood diversity.

Neighborhood Diversity [Lampis 2010]

- Graph $G=(V, E)$
- $u, v \in V$ have the same type iff $N(v)-\{u\}=N(u)-\{v\}$

Neighborhood Diversity [Lampis 2010]

- Graph $G=(V, E)$
- $u, v \in V$ have the same type iff $N(v)-\{u\}=N(u)-\{v\}$
- A type partition of G is a partition $V_{1}, V_{2}, \ldots, V_{t}$, of the vertex set V, such that all the vertices in the type set V_{i} have the same type, for $i \in\{1, \ldots, t\}$
- Note that by definition, each type set V_{i} induces either a clique or an independent set in G

Neighborhood Diversity [Lampis 2010]

- Graph $G=(V, E)$
- $u, v \in V$ have the same type iff
$N(v)-\{u\}=N(u)-\{v\}$
- A type partition of G is a partition $V_{1}, V_{2}, \ldots, V_{t}$, of the vertex set V, such that all the vertices in the type set V_{i} have the same type, for $i \in\{1, \ldots, t\}$
- Note that by definition, each type set V_{i} induces either a clique or an independent set in G

The neighborhood diversity of $G, \operatorname{nd}(G)$, is the minimum number t of sets in a type partition $V_{1}, V_{2}, \ldots, V_{t}$ of G

Neighborhood Diversity [Lampis 2010]

- Graph $G=(V, E)$
- The type partition
$V_{1}, V_{2}, \ldots, V_{\mathrm{nd}}$ of G

Neighborhood Diversity [Lampis 2010]

- Graph $G=(V, E)$
- The type partition $V_{1}, V_{2}, \ldots, V_{\text {nd }}$ of G
- The type graph H of G is defined as
- $V(H)=\{1, \ldots, \mathrm{nd}\}$
- $E(H)=\{\{x, y\} \mid x \neq y$ and for each $u \in V_{x}, v \in V_{y}$ it holds $\{u, v\} \in E\}$

The minimum number of branch vertices

Lemma 2

Let $G=(V, E)$ be a connected graph with type partition $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{\text {nd }}\right\}$. Any spanning tree of G with $b(G)$ branch vertices has at most one branch vertex belonging to any set of the type partition \mathcal{V}. Hence, $b(G) \leq$ nd.

The minimum number of branch vertices

Lemma 2

Let $G=(V, E)$ be a connected graph with type partition $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{\text {nd }}\right\}$. Any spanning tree of G with $b(G)$ branch vertices has at most one branch vertex belonging to any set of the type partition \mathcal{V}. Hence, $b(G) \leq$ nd.

The minimum number of branch vertices

Lemma 2

Let $G=(V, E)$ be a connected graph with type partition $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{\text {nd }}\right\}$. Any spanning tree of G with $b(G)$ branch vertices has at most one branch vertex belonging to any set of the type partition \mathcal{V}. Hence, $b(G) \leq$ nd.

The Algorithm

- Connected graph $G=(V, E)$
- The type partition $V_{1}, V_{2}, \ldots, V_{\mathrm{nd}}$ of G
- The type graph H of G

The algorithm

For each fixed set $B_{H} \subseteq\{1, \ldots, \mathrm{nd}\}$, ordered by size,
(1) solve an Integer Linear Program for B_{H} (exploiting the properties of the type partition of G)
(2) if a solution of ILP exists for the current set B_{H}, construct a spanning tree of G with $\left|B_{H}\right|$ branch vertices (where each branch vertex is from exactly one type set whose index is in B_{H}).

The Algorithm

- Connected graph $G=(V, E)$
- The type partition $V_{1}, V_{2}, \ldots, V_{\text {nd }}$ of G
- The type graph H of G

The algorithm

For each fixed set $B_{H} \subseteq\{1, \ldots, \mathrm{nd}\}$, ordered by size,
(1) solve an Integer Linear Program for B_{H} (exploiting the properties of the type partition of G)
(2) if a solution of ILP exists for the current set B_{H}, construct a spanning tree of G with $\left|B_{H}\right|$ branch vertices (where each branch vertex is from exactly one type set whose index is in B_{H}).

Since modular-width generalizes neighborhood diversity, the FPT algorithm for Hamiltonian PATH parameterized by modular width in [Gajarský et al., 2013] can be used for the case $B_{H}=\emptyset$.
In the following we assume $\left|B_{H}\right| \geq 1$.

Integer Linear Program for $B_{H} \subseteq\{1, \ldots$, nd $\}$

- Select any arbitrary $r \in B_{H}$
- $H_{B_{H}}=\left(\{1, \ldots\right.$, nd $\left.\} \cup\{s\}, A_{B_{H}}\right)$, with $A_{B_{H}}=\{(s, r)\} \cup\{(i, j),(j, i) \mid\{i, j\} \in E(H)\}$
- For each $(j, i) \in A_{B_{H}}$, ILP uses a variable $x_{j i}$
$x_{j i}=$ the number of vertices in the type set V_{i} whose parent in the spanning tree, is a vertex in the type set V_{j}

Integer Linear Program for $B_{H} \subseteq\{1, \ldots$, nd $\}$

- Select any arbitrary $r \in B_{H}$
- $H_{B_{H}}=\left(\{1, \ldots\right.$, nd $\left.\} \cup\{s\}, A_{B_{H}}\right)$, with $A_{B_{H}}=\{(s, r)\} \cup\{(i, j),(j, i) \mid\{i, j\} \in E(H)\}$
- For each $(j, i) \in A_{B_{H}}$, ILP uses a variable $x_{j i}$
$x_{j i}=$ the number of vertices in the type set V_{i} whose parent in the spanning tree, is a vertex in the type set V_{j}

Integer Linear Program for $B_{H} \subseteq\{1, \ldots$, nd $\}$

- Select any arbitrary $r \in B_{H}$
- $H_{B_{H}}=\left(\{1, \ldots\right.$, nd $\left.\} \cup\{s\}, A_{B_{H}}\right)$, with $A_{B_{H}}=\{(s, r)\} \cup\{(i, j),(j, i) \mid\{i, j\} \in E(H)\}$
- For each $(j, i) \in A_{B_{H}}$, ILP uses a variable $x_{j i}$
$x_{j i}=$ the number of vertices in the type set V_{i} whose parent in the spanning tree, is a vertex in the type set V_{j}

Integer Linear Program for $B_{H} \subseteq\{1, \ldots$, nd $\}$

- Select any arbitrary $r \in B_{H}$
- $H_{B_{H}}=\left(\{1, \ldots\right.$, nd $\left.\} \cup\{s\}, A_{B_{H}}\right)$, with $A_{B_{H}}=\{(s, r)\} \cup\{(i, j),(j, i) \mid\{i, j\} \in E(H)\}$
- For each $(j, i) \in A_{B_{H}}$, ILP uses a variable $x_{j i}$
$x_{j i}=$ the number of vertices in the type set V_{i} whose parent in the spanning tree, is a vertex in the type set V_{j}

$$
\begin{aligned}
& i \notin B_{H} \\
& \sum_{\ell:(i, \ell) \in A_{B_{H}}} x_{i \ell}-\sum_{j:(j, i) \in A_{B_{H}}} x_{j i} \leq 0
\end{aligned}
$$

Integer Linear Program for $B_{H} \subseteq\{1, \ldots$, nd $\}$

- Select any arbitrary $r \in B_{H}$
- $H_{B_{H}}=\left(\{1, \ldots\right.$, nd $\left.\} \cup\{s\}, A_{B_{H}}\right)$, with $A_{B_{H}}=\{(s, r)\} \cup\{(i, j),(j, i) \mid\{i, j\} \in E(H)\}$
- For each $(j, i) \in A_{B_{H}}$, ILP uses a variable $x_{j i}$ $x_{j i}=$ the number of vertices in the type set V_{i} whose parent in the spanning tree, is a vertex in the type set V_{j}

Integer Linear Program for $B_{H} \subseteq\{1, \ldots$, nd $\}$

$$
\begin{aligned}
& x_{s r}=1 \\
& \sum_{j, i) \in A_{B_{H}}} x_{j i} \leq\left|V_{i}\right| \\
& \forall i \in\{1, \ldots, \text { nd }\} \text { s.t. } V_{i} \text { is a clique } \\
& \sum_{(j, i) \in A_{B_{H}}} x_{j i}=\left|V_{i}\right| \\
& \forall i \in\{1, \ldots, \text { nd }\} \text { s.t. } V_{i} \text { is an ind. set } \\
& \begin{array}{l}
\sum_{\ell:(i, \ell) \in A_{B_{H}}} x_{i \ell}-\sum_{j:(j, i) \in A_{B_{H}}} x_{j i} \leq 0 \quad \forall i \in\{1, \ldots, \mathrm{nd}\}-B_{H} \\
y_{s r}=\text { nd }
\end{array} \\
& \sum_{j:(j, i) \in A_{B_{H}}} y_{j i}-\sum_{\ell:(i, \ell) \in A_{B_{H}}} y_{i \ell}=1 \quad \forall i \in\{1, \ldots, \mathrm{nd}\} \\
& y_{i j} \leq \operatorname{nd} x_{i j} \\
& \forall(i, j) \in A_{B_{H}} \\
& y_{i j}, x_{i j} \in \mathbb{N} \quad \forall(i, j) \in A_{B_{H}}
\end{aligned}
$$

Integer Linear Program

Integer Linear Program

Integer Linear Program

The ILP has no solution for each $B_{H} \subseteq\{1,2, \ldots, 11\}$ with $\left|B_{H}\right|=1$

Integer Linear Program

The ILP has a solution (x, y) for $B_{H}=\{1,6\}$

The spanning tree construction

$B_{H}=\{1,6\}$

The spanning tree construction

$B_{H}=\{1,6\}$

Choose a vertex in $V_{1}=\{a\}$ as root of T and start to explore G, according to the values of x, until it is possible

The spanning tree construction

$B_{H}=\{1,6\}$

Choose a vertex in $V_{1}=\{a\}$ as root of T and start to explore G, according to the values of x, until it is possible

There exists always a type set having an explored vertex and an unexplored vertex; this holds for V_{5}

The spanning tree construction

$B_{H}=\{1,6\}$

Choose a vertex in $V_{1}=\{a\}$ as root of T and start to explore G, according to the values of x, until it is possible

There exists always a type set having an explored vertex and an unexplored vertex; this holds for V_{5}

The spanning tree construction

$B_{H}=\{1,6\}$

Start a new exploration from vertex h

The spanning tree construction

$$
B_{H}=\{1,6\}
$$

Start a new exploration from vertex h

There is a cycle in H_{x} containing 5 . The subtree rooted at i is reconnected to the main tree. All the vertices have been explored

The spanning tree construction

$$
B_{H}=\{1,6\}
$$

Start a new exploration from vertex h

There is a cycle in H_{x} containing 5 . The subtree rooted at i is reconnected to the main tree. All the vertices have been explored

Optimality

Lemma 3

If there exists a spanning tree in G with $k \geq 1$ branch vertices then there exists a set $B_{H} \subseteq\{1, \ldots, \mathrm{nd}\}$ with $\left|B_{H}\right|=k$, and a solution (x, y) of the corresponding ILP.

The algorithm complexity

The algorithm

For each fixed set $B_{H} \subseteq\{1, \ldots$, nd $\}$, ordered by size,
(1) solve an Integer Linear Program for B_{H}
(2) if a solution of ILP exists for the current set B_{H}, construct a spanning tree of G with $\left|B_{H}\right|$ branch vertices.

The algorithm complexity

The algorithm

For each fixed set $B_{H} \subseteq\{1, \ldots$, nd $\}$, ordered by size,
(1) solve an Integer Linear Program for B_{H}
(2) if a solution of ILP exists for the current set B_{H}, construct a spanning tree of G with $\left|B_{H}\right|$ branch vertices.

For each fixed $B_{H} \subseteq\{1, \ldots$, nd $\}$,

- using [Jansen et al., 2023] that gives an efficient algorithm to find a feasible solution of an ILP with small number of constraints, we have that our ILP can be solved in time

$$
O\left(\mathrm{nd}^{2}\right)^{(1+o(1))\left(\mathrm{nd}^{2}+3 \mathrm{nd}+2\right)}+O\left(\mathrm{nd}^{4}\right)
$$

(2) the time to construct the spanning tree is $O\left(n^{2}\right)$

The algorithm complexity

The algorithm

For each fixed set $B_{H} \subseteq\{1, \ldots$, nd $\}$, ordered by size,
(1) solve an Integer Linear Program for B_{H}
(2) if a solution of ILP exists for the current set B_{H}, construct a spanning tree of G with $\left|B_{H}\right|$ branch vertices.

For each fixed $B_{H} \subseteq\{1, \ldots$, nd $\}$,

- using [Jansen et al., 2023] that gives an efficient algorithm to find a feasible solution of an ILP with small number of constraints, we have that our ILP can be solved in time

$$
O\left(\mathrm{nd}^{2}\right)^{(1+o(1))\left(\mathrm{nd}^{2}+3 \mathrm{nd}+2\right)}+O\left(\mathrm{nd}^{4}\right)
$$

- the time to construct the spanning tree is $O\left(n^{2}\right)$

Overall the time of our algorithm is

$$
2^{\mathrm{nd}}\left(O\left(\mathrm{nd}^{2}\right)^{(1+o(1))\left(\mathrm{nd}^{2}+3 \mathrm{nd}+2\right)}+O\left(\mathrm{nd}^{4}\right)\right)+O\left(n^{2}\right)
$$

which is only additive in the input size.
thank

