
Routing Schemes for Hybrid Communication Networks

SIROCCO 2023

Sam Coy, Artur Czumaj, Christian Scheideler, Philipp Schneider, Julian Werthmann

June 7, 2023



Model & Motivation - Hybrid Communication

I

I

I I

I

Û

• Communicate via different channels at the same time

• Data Centers (Cables + Lasers)

• Wireless Networks (Ad hoc + Cellular)

1/17



Model & Motivation - Hybrid Communication

I

I

I I

I

Û

• Communicate via different channels at the same time

• Data Centers (Cables + Lasers)

• Wireless Networks (Ad hoc + Cellular)

1/17



Model & Motivation - Hybrid Communication

• HYBRID model1

• Synchronous rounds

• Local edges: CONGEST

• Send one message of size O(log n) per neighbor per round

• Global edges: NCC0
2

• Send & Receive O(log n) messages of size O(log n) per round

• Can send messages only if target known

• n nodes with unique identifiers and positions in Z2

• Grid graph G = (V ,E ), {v ,w} ∈ E ⇔ ∥v − w∥2 = 1

1Augustine et al., “Shortest Paths in a Hybrid Network Model”.
2Augustine et al., “Distributed Graph Realizations †”.

2/17



Model & Motivation - Hybrid Communication

• HYBRID model1

• Synchronous rounds

• Local edges: CONGEST

• Send one message of size O(log n) per neighbor per round

• Global edges: NCC0
2

• Send & Receive O(log n) messages of size O(log n) per round

• Can send messages only if target known

• n nodes with unique identifiers and positions in Z2

• Grid graph G = (V ,E ), {v ,w} ∈ E ⇔ ∥v − w∥2 = 1

1Augustine et al., “Shortest Paths in a Hybrid Network Model”.
2Augustine et al., “Distributed Graph Realizations †”.

2/17



Model & Motivation - Problem Definition

• Preprocessing Phase: Compute routing tables and node

labels for each node

• Routing Phase: Given target node’s label forward packet

using routing table

Goals

Routing tables and node labels for local graph with:

• Fast preprocessing

• Small routing tables

• Small node labels

• Small stretch

3/17



Model & Motivation - Problem Definition

• Preprocessing Phase: Compute routing tables and node

labels for each node

• Routing Phase: Given target node’s label forward packet

using routing table

Goals

Routing tables and node labels for local graph with:

• Fast preprocessing

• Small routing tables

• Small node labels

• Small stretch

3/17



Model & Motivation - Problem Definition

• Preprocessing Phase: Compute routing tables and node

labels for each node

• Routing Phase: Given target node’s label forward packet

using routing table

Goals

Routing tables and node labels for local graph with:

• Fast preprocessing

• Small routing tables

• Small node labels

• Small stretch

3/17



Model & Motivation - Problem Definition

• Preprocessing Phase: Compute routing tables and node

labels for each node

• Routing Phase: Given target node’s label forward packet

using routing table

Goals

Routing tables and node labels for local graph with:

• Fast preprocessing

• Small routing tables

• Small node labels

• Small stretch

3/17



Model & Motivation - Problem Definition

• Preprocessing Phase: Compute routing tables and node

labels for each node

• Routing Phase: Given target node’s label forward packet

using routing table

Goals

Routing tables and node labels for local graph with:

• Fast preprocessing

• Small routing tables

• Small node labels

• Small stretch

3/17



Model & Motivation - Problem Definition

• Preprocessing Phase: Compute routing tables and node

labels for each node

• Routing Phase: Given target node’s label forward packet

using routing table

Goals

Routing tables and node labels for local graph with:

• Fast preprocessing

• Small routing tables

• Small node labels

• Small stretch

3/17



Related Work - No Radio Holes3

• O(log n) rounds of preprocessing

• Node labels of size O(log n)

• O(log n) bits of information stored at each node

• Exact in grid graphs, constant stretch in UDGs

3Coy et al., Near-Shortest Path Routing in Hybrid Communication Networks.

4/17



Contributions - Radio Holes

• Paths can no longer be transformed into each other

• Number of classes of paths scale fast with number of holes

5/17



Contributions - Radio Holes

• Paths can no longer be transformed into each other

• Number of classes of paths scale fast with number of holes

5/17



Contributions - Radio Holes

• Paths can no longer be transformed into each other

• Number of classes of paths scale fast with number of holes

5/17



Contributions - Radio Holes

• Paths can no longer be transformed into each other

• Number of classes of paths scale fast with number of holes

5/17



Contributions - Radio Holes

• Paths can no longer be transformed into each other

• Number of classes of paths scale fast with number of holes

5/17



Contributions - Radio Holes

• Paths can no longer be transformed into each other

• Number of classes of paths scale fast with number of holes

5/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region

6/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region

6/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region

6/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region

6/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region

6/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region

6/17



Contributions - Approach

• Divide grid graph into

regions

• Use related work’s scheme

to route inside regions

• Use new scheme to route

towards target region

Regionalization Requirements

• Simple: The regions contain no holes

• Path-convex: For each pair of nodes in a region, there is a

shortest path inside that region
6/17



Contributions - Regionalization Steps

I: Simple Regions

II: Tunnels

III: Path-Convex Regions

7/17



Contributions - Regionalization Steps

I: Simple Regions

II: Tunnels

III: Path-Convex Regions

7/17



Contributions - Regionalization Steps

I: Simple Regions

II: Tunnels

III: Path-Convex Regions

7/17



Contributions - Regionalization Steps

I: Simple Regions

II: Tunnels

III: Path-Convex Regions

7/17



Contributions - Regionalization Result

Runtime: O(log n) #Regions: O(h)

8/17



Contributions - Region Routing

• Problem: How to decide which region to go to next?

• Solution: Landmark Graph

• Shortest path in Landmark Graph corresponds to shortest

path through regions

• Making it part of routing table allows local decisions

9/17



Contributions - Region Routing

• Problem: How to decide which region to go to next?

• Solution: Landmark Graph

• Shortest path in Landmark Graph corresponds to shortest

path through regions

• Making it part of routing table allows local decisions

9/17



Contributions - Region Routing

• Problem: How to decide which region to go to next?

• Solution: Landmark Graph

• Shortest path in Landmark Graph corresponds to shortest

path through regions

• Making it part of routing table allows local decisions

9/17



Contributions - Landmark Graph

• Mark key nodes of the graph

as landmarks

• Connect two landmarks, if

• Adjacent on same gate

• On Adjacent gates and

closest

• Add distances as weights

10/17



Contributions - Landmark Graph

• Mark key nodes of the graph

as landmarks

• Connect two landmarks, if

• Adjacent on same gate

• On Adjacent gates and

closest

• Add distances as weights

10/17



Contributions - Landmark Graph

• Mark key nodes of the graph

as landmarks

• Connect two landmarks, if

• Adjacent on same gate

• On Adjacent gates and

closest

• Add distances as weights

10/17



Contributions - Landmark Graph

• Mark key nodes of the graph

as landmarks

• Connect two landmarks, if

• Adjacent on same gate

• On Adjacent gates and

closest

• Add distances as weights

10/17



Contributions - Landmark Graph

• Mark key nodes of the graph

as landmarks

• Connect two landmarks, if

• Adjacent on same gate

• On Adjacent gates and

closest

• Add distances as weights

10/17



Contributions - Landmark Graph

• Mark key nodes of the graph

as landmarks

• Connect two landmarks, if

• Adjacent on same gate

• On Adjacent gates and

closest

• Add distances as weights

10/17



Contributions - Landmark Graph Result

Runtime: O(log n) #Landmarks: O(h2) #Edges: O(h2)

11/17



Contributions - Landmark Graph Result

Runtime: O(log n) #Landmarks: O(h2) #Edges: O(h2)

11/17



Contributions - SSSP without holes

12/17



Contributions - SSSP without holes

12/17



Contributions - SSSP without holes

12/17



Contributions - SSSP without holes

• Solve SSSP in both trees4

• Vertical: Amount of

horizontal steps

• Horizontal: Amount of

vertical steps

• Sum: Total distance

• Runtime: O(log n)

4Feldmann, Hinnenthal, and Scheideler, “Fast Hybrid Network Algorithms for

Shortest Paths in Sparse Graphs”.

13/17



Contributions - SSSP without holes

• Solve SSSP in both trees4

• Vertical: Amount of

horizontal steps

• Horizontal: Amount of

vertical steps

• Sum: Total distance

• Runtime: O(log n)

4Feldmann, Hinnenthal, and Scheideler, “Fast Hybrid Network Algorithms for

Shortest Paths in Sparse Graphs”.

13/17



Contributions - SSSP without holes

• Solve SSSP in both trees4

• Vertical: Amount of

horizontal steps

• Horizontal: Amount of

vertical steps

• Sum: Total distance

• Runtime: O(log n)

4Feldmann, Hinnenthal, and Scheideler, “Fast Hybrid Network Algorithms for

Shortest Paths in Sparse Graphs”.

13/17



Contributions - SSSP without holes

• Solve SSSP in both trees4

• Vertical: Amount of

horizontal steps

• Horizontal: Amount of

vertical steps

• Sum: Total distance

• Runtime: O(log n)

4Feldmann, Hinnenthal, and Scheideler, “Fast Hybrid Network Algorithms for

Shortest Paths in Sparse Graphs”.

13/17



Contributions - SSSP without holes

• Solve SSSP in both trees4

• Vertical: Amount of

horizontal steps

• Horizontal: Amount of

vertical steps

• Sum: Total distance

• Runtime: O(log n)

4Feldmann, Hinnenthal, and Scheideler, “Fast Hybrid Network Algorithms for

Shortest Paths in Sparse Graphs”.

13/17



Contributions - Preprocessing Wrapup

Preprocessing Step Runtime

Regionalization O(log n)

Computing landmark graph O(log n)

Distributing landmark graph5 O(h2 + log n)

SSSP from each landmark O(log n)

’SSSP’ from each gate O(log n)

Distributing region indentifiers O(log n)

Region routing tables6 O(log n)

Total O(h2 + log n)

5Augustine et al., “Distributed Computation in Node-Capacitated Networks”.
6Coy et al., Near-Shortest Path Routing in Hybrid Communication Networks.

14/17



Contributions - Node Labels and Routing Tables

Node Label Information Bits

Node identifier O(log n)

Region identifer O(log n)

Region distance information O(log n)

Total O(log n)

Routing Table Information Bits

Region distance information O(log n)

Region routing tables O(log n)

Landmark graph O(h2 · log n)
Total O(h2 · log n)

15/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Routing Phase

• If in same region as target:

• Region routing tables

• Else:

• Augment landmark graph

• Locally solve SSSP

• Forward to neighbor with

smallest distance to next

gate

16/17



Contributions - Conclusion

• Exact for grid graphs, constant stretch in UDGs7

• Lower bound for preprocessing in general graphs: Ω̃(n1/3)8

• Upper bound for grid graphs: O(h2 + log n)

Future Work:

• Reduce h2 to h for similar approach

• Different approaches without falling back to no holes

7Coy et al., Near-Shortest Path Routing in Hybrid Communication Networks.
8Kuhn and Schneider, “Routing Schemes and Distance Oracles in the Hybrid

Model”.

17/17



Contributions - Conclusion

• Exact for grid graphs, constant stretch in UDGs7

• Lower bound for preprocessing in general graphs: Ω̃(n1/3)8

• Upper bound for grid graphs: O(h2 + log n)

Future Work:

• Reduce h2 to h for similar approach

• Different approaches without falling back to no holes

7Coy et al., Near-Shortest Path Routing in Hybrid Communication Networks.
8Kuhn and Schneider, “Routing Schemes and Distance Oracles in the Hybrid

Model”.

17/17



Contributions - Conclusion

• Exact for grid graphs, constant stretch in UDGs7

• Lower bound for preprocessing in general graphs: Ω̃(n1/3)8

• Upper bound for grid graphs: O(h2 + log n)

Future Work:

• Reduce h2 to h for similar approach

• Different approaches without falling back to no holes

7Coy et al., Near-Shortest Path Routing in Hybrid Communication Networks.
8Kuhn and Schneider, “Routing Schemes and Distance Oracles in the Hybrid

Model”.

17/17



Contributions - Conclusion

• Exact for grid graphs, constant stretch in UDGs7

• Lower bound for preprocessing in general graphs: Ω̃(n1/3)8

• Upper bound for grid graphs: O(h2 + log n)

Future Work:

• Reduce h2 to h for similar approach

• Different approaches without falling back to no holes

7Coy et al., Near-Shortest Path Routing in Hybrid Communication Networks.
8Kuhn and Schneider, “Routing Schemes and Distance Oracles in the Hybrid

Model”.

17/17



Thank you!

17/17



Contributions - Regionalization I: Simple Regions

• Mark leftmost node of each

hole boundary

• Portals containing marked

nodes are gates

• Marked nodes cut portals

from hole’s side



Contributions - Regionalization I: Simple Regions

• Mark leftmost node of each

hole boundary

• Portals containing marked

nodes are gates

• Marked nodes cut portals

from hole’s side



Contributions - Regionalization I: Simple Regions

• Mark leftmost node of each

hole boundary

• Portals containing marked

nodes are gates

• Marked nodes cut portals

from hole’s side



Contributions - Regionalization I: Simple Regions

• Mark leftmost node of each

hole boundary

• Portals containing marked

nodes are gates

• Marked nodes cut portals

from hole’s side



Contributions - Regionalization II: Tunnels

• Identify regions with > 2

gates

• Add portals splitting three

gates as new gate

• Locally Checkable! Adjacent

portals touch different holes



Contributions - Regionalization II: Tunnels

• Identify regions with > 2

gates

• Add portals splitting three

gates as new gate

• Locally Checkable! Adjacent

portals touch different holes



Contributions - Regionalization II: Tunnels

• Identify regions with > 2

gates

• Add portals splitting three

gates as new gate

• Locally Checkable! Adjacent

portals touch different holes



Contributions - Regionalization II: Tunnels

• Identify regions with > 2

gates

• Add portals splitting three

gates as new gate

• Locally Checkable! Adjacent

portals touch different holes



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Regionalization III: Path-Convex Regions

• Portals see each other

• Bound Region with

vertical distance 0

• Portals do not see each
other

• Add horizontal Gates

through closest nodes

• Add Gates at half

horizontal & vertical

distance



Contributions - Landmark Graph Nodes

• Mark key nodes as
landmarks

• Endpoints of Gates

• Overhang Induced

• Projections



Contributions - Landmark Graph Nodes

• Mark key nodes as
landmarks

• Endpoints of Gates

• Overhang Induced

• Projections



Contributions - Landmark Graph Nodes

• Mark key nodes as
landmarks

• Endpoints of Gates

• Overhang Induced

• Projections



Contributions - Landmark Graph Nodes

• Mark key nodes as
landmarks

• Endpoints of Gates

• Overhang Induced

• Projections



Contributions - Landmark Graph Nodes

• Mark key nodes as
landmarks

• Endpoints of Gates

• Overhang Induced

• Projections



Contributions - Landmark Graph Edges

• Connect landmarks if

• Adjacent on same Gate

• On adjacent Gates and

closest

• Add weights according to

distances



Contributions - Landmark Graph Edges

• Connect landmarks if

• Adjacent on same Gate

• On adjacent Gates and

closest

• Add weights according to

distances



Contributions - Landmark Graph Edges

• Connect landmarks if

• Adjacent on same Gate

• On adjacent Gates and

closest

• Add weights according to

distances



Contributions - Landmark Graph Edges

• Connect landmarks if

• Adjacent on same Gate

• On adjacent Gates and

closest

• Add weights according to

distances



Contributions - Landmark Graph Edges

• Connect landmarks if

• Adjacent on same Gate

• On adjacent Gates and

closest

• Add weights according to

distances


	Appendix

