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One-Line Result

Theorem (Informal)

Min Cost Flow with Õ(
√
n) Laplacian solves in the CONGEST model.



The CONGEST Model

G = (V ,E ), |V | = n, |E | = m

Communication over edges in
synchronous rounds

Bandwidth O(log n) bits per
edge



Flow in the CONGEST Model

Definition

G = (V ,E ) directed, capacities c ∈ Zm
≥0, costs q ∈ Zm, source and target

s, t ∈ V . The minimum cost (maximum) flow problem is to find the
s − t flow f ∈ Rm of minimum cost, among all flows of maximum value.

Exact unless stated otherwise

Generalizes Max Flow and Negative Weight Shortest Path

Lower bound: Ω̃(
√
n + D)

Recently first exact CONGEST algorithm: round complexity
> m3/7n1/2 [FGLPSY ’21]
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Laplacian Paradigm

Laplacian systems

Spectral sparsifiers

Electrical flow

Effective resistance

Expander decompositions

Continuous optimization

Interior-point methods

Gradient descent

Preconditioning

. . .



Laplacian Paradigm and Distributed Computing

Observation

Laplacian paradigm often yields inherently parallelizable algorithms

Basic operation:

Vector x: each node represents a coordinate

Matrix A: each edge represents a non-zero entry

Matrix-vector multiplication Ax: one round

State of the art for (approximate) single-source shortest path, maximum
flow, minimum-cost flow:
[GKKLPS ’15] [BFKL ’17] [Z ’21] [AGL ’21] [ZGYHS ’22] [RGHZL ’22] [FV ’22]

[FV ’23]
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Laplacian Systems

Goal

Solve linear system Lx = b such that L is a Laplacian matrix.

Definition

The Laplacian matrix LG is defined by LG := D− A, i.e.,

(LG )u,v =

{ ∑
(u,v ′)∈E wu,v ′ if u = v ,

−wu,v otherwise.

High-precision solver: Approximation x of solution x∗ s.t.

∥x− x∗∥L(G) ≤ ϵ∥b∥L(G) .

Round complexity TLaplacian

TLaplacian = no(1)(
√
n + D) in general [FGLPSY ’21]

TLaplacian = no(1)D in planar graphs, expander graphs, no(1)-genus
graphs, no(1)-treewidth graphs, and excluded-minor graphs
[ALHZG ’22]
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Flow in the CONGEST Model: Our Result

Definition

G = (V ,E ) directed, capacities c ∈ Zm, costs q ∈ Zm, source and target
s, t ∈ V . The minimum cost (maximum) flow problem is to find the
s − t flow f ∈ Rm of minimum cost, among all flows of maximum value.

Theorem

G = (V ,E ) directed, ||c ||∞, ||q||∞ ≤ M. We can solve the minimum cost
maximum flow problem in Õ(

√
nTLaplacian log

3M) rounds in the
CONGEST model.

TLaplacian = no(1)(
√
n + D) in general [FGLPSY ’21]

TLaplacian = no(1)D in planar graphs, expander graphs, no(1)-genus
graphs, no(1)-treewidth graphs, and excluded-minor graphs
[ALHZG ’22]

Also: Max Flow and Negative Weight Shortest Path

Obtain result by solving a more general class of LPs
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Flow in the CONGEST Model: Previous Work

Theorem

G = (V ,E ) directed, ||c ||∞, ||q||∞ ≤ M. We can solve the minimum cost
maximum flow problem in Õ(

√
nTLaplacian log

3M) rounds in the
CONGEST model.

Unit Capacity Min-Cost Flow: m3/7+o(1)(
√
nD1/4 + D) rounds

[FGLPSY ’21]

Max Flow: Õ(m3/7M1/7(
√
nD1/4 + D) +

√
m) rounds [FGLPSY ’21]

Undirected Approximate Unit Capacity Min-Cost Flow: Õ(n/ϵ2)
rounds [BFKL ’21]

Undirected Approximate Max Flow: no(1)(
√
n + D)/ϵ3 rounds
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Flow in Other Distributed Models

Broadcast Congested Clique:

Minimum Cost Flow: Õ(
√
n) rounds [FV ’22]

Deterministic Congested Clique:

Maximum Flow: m3/7+o(1)M1/7 rounds [FV ’23]

Unit Capacity Minimum Cost Flow:
Õ(m3/7(n0.158 + no(1)poly logM)) rounds [FV ’23]



LP Solver: Main Idea and Challenges

Linear Programming

Minimize cTx subject to Mx = b

Implementation of [LS ’14] in CONGEST:
Interior point method with Õ(

√
rank) iterations involving

▶ Õ(1) matrix-vector multiplications
▶ Õ(1) linear system solves
▶ Leverage score computation with Johnson-Lindenstrauss
▶ Projection on a mixed norm ball:

arg max
||x||2+||ℓ−1x||∞≤1

aTx for some a, ℓ ∈ Rm

Theorem

Can solve LP with M expressed in LG in Õ(
√
rank) rounds.

Minimum Cost Flow: [DS ’08]

Rank = O(#nodes) = O(n)

Round approximate solution to exact solution
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√
rank) rounds.

Minimum Cost Flow: [DS ’08]

Rank = O(#nodes) = O(n)

Round approximate solution to exact solution



LP Solver: Main Idea and Challenges

Linear Programming

Minimize cTx subject to Mx = b

Implementation of [LS ’14] in CONGEST:
Interior point method with Õ(
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Does faster Max Flow transfer to CONGEST?

[LS ’14]:
#iterations: Õ(

√
n)

Time per iteration: Õ(m)

Iteration count carries over to
round complexity

[CKLPPGS ’22]:
#iterations: m1+o(1)

Time per iteration: mo(1)

Running time improvement does
not improve round complexity

Question

Is Θ̃(
√
n) the right iteration count for min-cost flow LP?
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Conclusion

Our Contributions

CONGEST LP Solver

CONGEST Minimum Cost Flow

Open Problems

LP Solver with Fewer Iterations

CONGEST LP Solver with Fewer Global Iterations

Combinatorial Minimum Cost Flow

Use LP solver for other problems


