On the Power of Threshold-Based Algorithms for Detecting Cycles in the CONGEST model

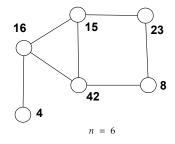
Pierre Fraigniaud, Maël Luce, Ioan Todinca

June 8th, 2023

Reminder: CONGEST model

- G = (V, E). Denote n = |V|.
- Arbitrary identifiers $\in poly(n)$.
- Synchronous rounds.

 O(log n) bits of communication per edge per round.



C_p -freeness

A p-cycle is a cycle of length p.

C_p -freeness problem:

- If G contains a p-cycle, at least one node must reject.
- All nodes accept otherwise.

State of the art

Length	Round complexity	Ref.
4	$ ilde{\Theta}(\sqrt{n})$	[DKO'14]
$2k+1 \geq 5$	$ ilde{\Theta}(n)$	[KR'17]
2 <i>k</i>	$O(n^{1-1/(k(k-1))})$	[EFGKO'18]
2k=6,8,10	$O(n^{1-1/k})$	[CFGLLO'20]

Our work

Threshold-based algorithm [CFGLLO'20]: Best complexity proven for $k \leq 5$.

Does it work for bigger lengths? No.

Theorem

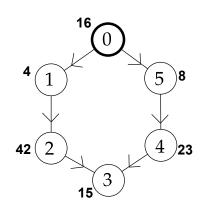
For any $k \ge 6$, threshold-based algorithms cannot solve C_{2k} -freeness in sublinear round complexity.

Reminder: Color-coding

Color-coding: Decide if a specific node u_0 is in a 2k-cycle in $\tilde{O}(1)$ rounds.

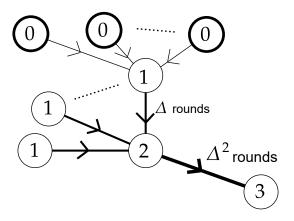
Repeat $\tilde{\Theta}(1)$ times:

- **1** Nodes ← color u.a.r. in [0,5].
- ② If u_0 colored 0: sends ID.
- Received ID forwarded. from color 1 to 2 to 3. and from 5 to 4 to 3.
- Color 3 detects cycle.



Limit of color-coding

Drawback: Parallelization for several starter nodes \rightarrow CONGESTION.



In general, $O(\Delta^{k-1})$ rounds for 2k-cycle.

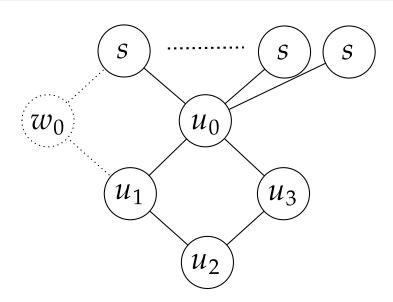
Threshold-based algorithm

WIN-WIN situation: only small degree \rightarrow *limited congestion*.

- Color-coding only with nodes of degree $\leq n^{1/k}$.
- Complexity: $O(n^{\frac{k-1}{k}}) = O(n^{1-1/k})$ rounds

• **To do:** 2k-cycle with node of degree $> n^{1/k} \rightarrow quick$ to sample neighborhood.

Example for C_4



Threshold-based algorithm

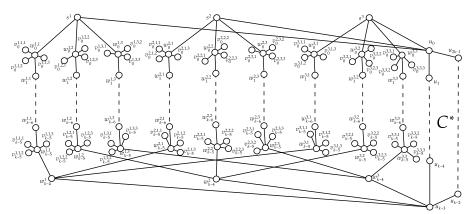
Cycle with node u_0 of degree $> n^{1/k}$. Repeat $\Theta(n^{1-1/k})$ times:

- **1** Draw node s u.a.r. \rightarrow probability $1/n^{1-1/k}$ of neighboring u_0
- 2 Color-coding from s, reject if in 2k-cycle
- Neighbors of s launch their own color-coding. Threshold: if node colored i receives > T identifiers, it does not forward. → NO CONGESTION!

Intuition: neighbors of u_0 which are not in a 2k-cycle of their own will usually respect the threshold.

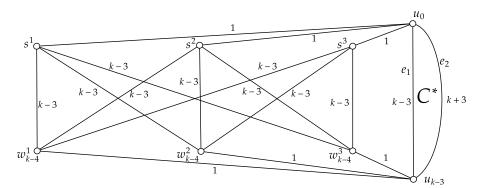
Impossibility

For any $k \ge 6$, threshold-based algorithms cannot solve C_{2k} -freeness in sublinear round complexity.



Impossibility

Simplified graph.



Positive results

Different lengths can work together to mutually fill their "proof holes".

 $\{C_{12}, C_{14}\}$ -freeness: neighbors of u_0 which are neither in a 12 or 14-cycle will *usually* respect the threshold.

Similar, more general result for bigger families of cycles.

Conclusion

• **Short-term:** are there other small families whose freeness threshold-based algorithms can solve ?

• Long-term: is there an algorithm that can solve C_{2k} -freeness for $k \geq 6$ in $O(n^{1-1/k})$?

Thank you!