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The radio network model
• A multi-hop network of is modeled as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸):

• Each vertex 𝑣𝑣 ∈ 𝑉𝑉 is a device.
• 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 if 𝑢𝑢 and 𝑣𝑣 are within the transmission 

range of each other.
• 𝑛𝑛 = 𝑉𝑉 is the number of devices.

• Synchronized communication: 
• Time is divided into discrete slots.



The radio network model

• Each device at each time slot chooses to do one 
of the following actions:

• Idle – do nothing.
• Transmit – send a message.
• Listen – listen to the channel.
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• Each device at each time slot chooses to do one 
of the following actions:

• Idle – do nothing.
• Transmit – send a message.
• Listen – listen to the channel.

If more than one device in the neighborhood 𝑁𝑁 𝑣𝑣 of 𝑣𝑣
transmit in the same time slot, then a collision occurs.

For each listening device 𝑣𝑣, it successfully receives a message 
from 𝑢𝑢 ∈ 𝑁𝑁 𝑣𝑣 if 𝑢𝑢 is the only transmitting device in 𝑁𝑁 𝑣𝑣 .



Time & energy 
complexity

• Two main complexity measures:
• Time – number of communication 

rounds (time slots).
• Energy – number of channel accesses 

(listen and transmit).



Prior work: single-hop networks
• Most of the early work on the energy complexity focused on single-hop radio networks:

• The special case where 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a complete graph.

• Over the last two decades, there has been a long line of research to optimize the 
energy complexity of leader election and its related problems.
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Prior work: multi-hop networks

• This line of research was recently extended to multi-hop radio networks.

• Upper bound: A polylogarithmic-energy algorithm for broadcasting a 
message from a vertex to the entire network.

• Lower bound: Sending a message from one endpoint of a path to the other 
endpoint costs Ω log𝑛𝑛 energy.

The energy complexity of broadcast
- Chang, Dani, Hayes, He, Li and Pettie
- PODC 2018
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Prior work: lower bounds

• Not all problems admit energy-efficient algorithms in multi-hop radio networks.

• Computing a 2 − 𝜖𝜖 -approximation of the diameter requires Ω 𝑛𝑛 energy.

• Computing a 1.5 − 𝜖𝜖 -approximation of the diameter requires �Ω 𝑛𝑛 energy in sparse graphs:

Chang, Dani, Hayes, and Pettie, PODC 2020

The lower bound holds for graphs with 
𝑂𝑂 log𝑛𝑛 treewidth and 𝑂𝑂 log𝑛𝑛 arboricity. 
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The lower bound holds for graphs with 
𝑂𝑂 log𝑛𝑛 treewidth and 𝑂𝑂 log𝑛𝑛 arboricity. 

To improve energy efficiency for diameter computation, 
it is necessary that we focus on a special graph class.



Our focus: bounded-
genus graphs

• The genus of a graph 𝐺𝐺 is the minimum number 𝑔𝑔 such 
that 𝐺𝐺 can be drawn on an oriented surface of 𝑔𝑔 handles 
without crossing. 

• Planar graphs = the graphs with genus zero.
• Graphs that can be drawn on a torus without 

crossing = the graphs with genus at most one. 

• A class of graphs is bounded-genus if the genus of all 
graphs in the class can be upper bounded by some 
constant.



Our results

Problem Time Energy

Diameter �𝑂𝑂 𝑛𝑛1.5 �𝑂𝑂 𝑛𝑛

Minimum cut �𝑂𝑂 𝑛𝑛1.5 �𝑂𝑂 𝑛𝑛

1 + 𝜖𝜖 -approximate 𝑠𝑠-𝑡𝑡 minimum cut �𝑂𝑂 𝑛𝑛1.5 + �𝑂𝑂 𝑛𝑛 ⋅ 𝜖𝜖−𝑂𝑂 1 �𝑂𝑂 𝑛𝑛 + 𝜖𝜖−𝑂𝑂 1

These algorithms apply to any bounded-genus graphs.
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Ω 𝑛𝑛 energy lower bound:

• Minimum cut of a unit-disc graph.

• 𝑠𝑠-𝑡𝑡 minimum cut of a planar graph.



Our approach

• The starting point:
• The topology of a graph with maximum degree Δ can be learned using �𝑂𝑂 Δ energy.
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All vertices in 𝑆𝑆 can learn the topology of the subgraph induced by 𝑆𝑆 with �𝑂𝑂 𝑛𝑛 energy. 

Observation: If the number of connected components of 
𝐺𝐺 𝑉𝑉𝐿𝐿 is �𝑂𝑂 𝑛𝑛 , then we are done:
• The entire graph topology of 𝐺𝐺 can be learned with �𝑂𝑂 𝑛𝑛

energy via �𝑂𝑂 𝑛𝑛 invocations of a broadcast algorithm.
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𝑢𝑢 ∈ 𝑉𝑉𝐻𝐻

Connected components of 𝐺𝐺 𝑉𝑉𝐿𝐿

𝑢𝑢 ∈ 𝑉𝑉𝐻𝐻

Connected components of 𝐺𝐺 𝑉𝑉𝐿𝐿

𝑣𝑣 ∈ 𝑉𝑉𝐻𝐻

These structures can be 
realized as planar graphs.
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Type-𝟑𝟑
components

Claim: The number of type-𝟑𝟑 components is 𝑂𝑂 𝑛𝑛 .

Observation: If the number of connected components of 
𝐺𝐺 𝑉𝑉𝐿𝐿 is �𝑂𝑂 𝑛𝑛 , then we are done.



The number of type-3 components

𝑌𝑌 = 𝑉𝑉𝐻𝐻 𝑋𝑋 = set of type-3 components 

Claim: The number of type-𝟑𝟑 components is 𝑂𝑂 𝑛𝑛 .

𝐺𝐺∗ = 𝑉𝑉∗ = 𝑋𝑋 ∪ 𝑌𝑌,𝐸𝐸∗

The genus of 𝐺𝐺∗ is 𝑔𝑔 = 𝑂𝑂 1 .
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Lemma: 2 𝑉𝑉∗ − 𝐸𝐸∗ ≥ 4 1 − 𝑔𝑔
• Consider a crossing-free drawing of 𝐺𝐺∗ into a surface of genus 𝑔𝑔.
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Each edge appears in at most two faces:
• 𝐸𝐸∗ ≥ 2 𝐹𝐹∗
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𝐺𝐺∗ = 𝑉𝑉∗,𝐸𝐸∗

The genus of 𝐺𝐺∗ is 𝑔𝑔 = 𝑂𝑂 1 .

Lemma: 2 𝑉𝑉∗ − 𝐸𝐸∗ ≤ 2 𝑌𝑌 − 𝑋𝑋
• 2 𝑉𝑉∗ − 𝐸𝐸∗ = 2 𝑋𝑋 + 𝑌𝑌 − 𝐸𝐸∗ ≤ 2 𝑌𝑌 − 𝑋𝑋

The degree of each vertex in 𝑋𝑋 is at least 3:
• 𝐸𝐸∗ ≥ 3 𝑋𝑋



The number of type-3 components

𝑌𝑌 = 𝑉𝑉𝐻𝐻 𝑋𝑋 = set of type-3 components 

Claim: The number of type-𝟑𝟑 components is 𝑂𝑂 𝑛𝑛 .

Lemma: 2 𝑉𝑉∗ − 𝐸𝐸∗ ≥ 4 1 − 𝑔𝑔

𝐺𝐺∗ = 𝑉𝑉∗,𝐸𝐸∗

The genus of 𝐺𝐺∗ is 𝑔𝑔 = 𝑂𝑂 1 .

Lemma: 2 𝑉𝑉∗ − 𝐸𝐸∗ ≤ 2 𝑌𝑌 − 𝑋𝑋
𝑋𝑋 ≤ 2 𝑌𝑌 + 4 1 − 𝑔𝑔 = 𝑂𝑂 𝑛𝑛



The remaining components

• It remains to deal with type-1 and type-2 components.

• Idea: To solve the considered problems, it is sufficient to extract a 
small quantity of information from these components.
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• It remains to deal with type-1 and type-2 components.

• Idea: To solve the considered problems, it is sufficient to extract a 
small quantity of information from these components.

𝑢𝑢 ∈ 𝑉𝑉𝐻𝐻

Type-𝟏𝟏
components

For example, consider the minimum cut problem:
• For each type-1 component 𝑆𝑆 adjacent to 𝑢𝑢 ∈ 𝑉𝑉𝐻𝐻:

• 𝑐𝑐 𝑆𝑆 = the minimum cut size of 𝐺𝐺 𝑆𝑆 ∪ 𝑢𝑢 .
• The only information 𝑢𝑢 ∈ 𝑉𝑉𝐻𝐻 needs to acquire from 

its adjacent type-1 components:
• The minimum value of 𝑐𝑐 𝑆𝑆 ranging over all 

type-1 components 𝑆𝑆 adjacent to 𝑢𝑢.
• This number can be calculated efficiently in the 

radio network model.



Conclusions

• For bounded-genus graphs, the following problems can be solved 
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• The energy complexity in other models, e.g., LOCAL and CONGEST.
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Thank you!
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