
Weighted Packet Selection for Rechargeable Links

Stefan Schmid Jakub Svoboda Michelle Yeo

1 / 16



Motivation
Problem
Sending transactions in blockchain is expensive (consensus,
security).

2 / 16



Motivation
Problem
Sending transactions in blockchain is expensive (consensus,
security).

2 / 16



Payment channels

u v
bu = 10 bv = 7

x = 10

u v
bu = 0 bv = 17

u v
bu = 10 bv = 7

x = 15

u v
bu = 10 bv = 7

Goal
Create efficient algorithm for a link (two nodes) in PCN that
cooperate, but do not trust each other.

3 / 16



Actions for link in PCNs

Action Capacity/Size Cost

Create link c c
Forward transaction x 0∗

Reject transaction x fx + m

u v
bu = 10 bv = 7

x = 10

u v
bu = 0 bv = 17

u v
bu = 10 bv = 7

x = 15

u v
bu = 10 bv = 7

4 / 16



Definitions

Cost
Channel creation + Cost for rejection.

Problem
Given sequence of transactions (→, 10), (←, 5), (→, 3), . . . , find
the solution of minimal cost.

Solution
Initial capacity of the channel and which transactions to reject.

5 / 16



Definitions

Cost
Channel creation + Cost for rejection.

Problem
Given sequence of transactions (→, 10), (←, 5), (→, 3), . . . , find
the solution of minimal cost.

Solution
Initial capacity of the channel and which transactions to reject.

5 / 16



Definitions

Cost
Channel creation + Cost for rejection.

Problem
Given sequence of transactions (→, 10), (←, 5), (→, 3), . . . , find
the solution of minimal cost.

Solution
Initial capacity of the channel and which transactions to reject.

5 / 16



Outline of the talk

NP-hardness

Algorithm

Linear program
Approximating the channel capacity
Tracking the linear program

6 / 16



Hardness

Problem is NP-hard
For set of numbers x1, x2, . . . and X , subset sum problem, we
create transactions (→, x1), (→, x2), . . . , (←,X ). Problem is yes
instance if the optimal solution has small cost.

7 / 16



Linear program
Constants: Fixed capacity M, Input (←, xi ).
Variables:

amount of i-th transaction accepted yi .
balance on the left (right) after processing i-th transaction
SL,i (SR,i ).

minimise
∑
i

f · (xi − yi ) + m
xi − yi
xi

subject to ∀i : yi ,SL,i ,SR,i ≥ 0

∀i : yi ≤ xi

∀i : SL,i + SR,i = M

∀xi ∈→: SL,i = SL,i−1 − yi

∀xi ∈→: SR,i = SR,i−1 + yi

∀xi ∈←: SL,i = SL,i−1 + yi

∀xi ∈←: SR,i = SR,i−1 − yi

8 / 16



Linear program
Constants: Fixed capacity M, Input (←, xi ).
Variables:

amount of i-th transaction accepted yi .
balance on the left (right) after processing i-th transaction
SL,i (SR,i ).

minimise
∑
i

f · (xi − yi ) + m
xi − yi
xi

subject to ∀i : yi ,SL,i ,SR,i ≥ 0

∀i : yi ≤ xi

∀i : SL,i + SR,i = M

∀xi ∈→: SL,i = SL,i−1 − yi

∀xi ∈→: SR,i = SR,i−1 + yi

∀xi ∈←: SL,i = SL,i−1 + yi

∀xi ∈←: SR,i = SR,i−1 − yi

8 / 16



Optimal capacity

If optimal capacity is M ′, we have

M ′ + rejectM′

We try all capacities M of the form (1 + ε)k .

min

(
M

1 + ε
+ rejectM

)

9 / 16



Optimal capacity

If optimal capacity is M ′, we have

M ′ + rejectM′

We try all capacities M of the form (1 + ε)k .

min

(
M

1 + ε
+ rejectM

)

9 / 16



Accepting fully accepted
transaction

Transaction where yi = xi is fully accepted.

We track SL and SR , we add reserves RL and RR , such that
RL + RR = M.

10 / 16



Accepting fully accepted
transactions

11 / 16



Accepting fully accepted
transactions

Accepted

12 / 16



Accepting fully accepted
transactions

13 / 16



Accepting fully accepted
transactions

Rejected

RL < xi − yi cannot accept

RR ≥ yi xi < M;RL + RR = M

14 / 16



Main idea of the algorithm

Transactions are almost-accepted if

yi
xi
≥

√
3√

3 + 1
.

Similarly as before, we can increase RL + RR =
√

3M and accept
almost-accepted transactions. This gives (1 +

√
3)(1 + ε)

algorithm.

15 / 16



Main idea of the algorithm

Transactions are almost-accepted if

yi
xi
≥

√
3√

3 + 1
.

Similarly as before, we can increase RL + RR =
√

3M and accept
almost-accepted transactions.

This gives (1 +
√

3)(1 + ε)
algorithm.

15 / 16



Main idea of the algorithm

Transactions are almost-accepted if

yi
xi
≥

√
3√

3 + 1
.

Similarly as before, we can increase RL + RR =
√

3M and accept
almost-accepted transactions. This gives (1 +

√
3)(1 + ε)

algorithm.

15 / 16



Summary

Problem definition

Hardness

(1 +
√

3)(1 + ε)-approximation algorithm

16 / 16


