Weighted Packet Selection for Rechargeable Links

Stefan Schmid Jakub Svoboda Michelle Yeo

Motivation

Problem
 Sending transactions in blockchain is expensive (consensus, security).

Motivation

Problem

Sending transactions in blockchain is expensive (consensus, security).

Methods are either Layer 1 or Layer 2 according to their focus (i.e., On-Chain or Off-Chain)

Payment channels

Goal
Create efficient algorithm for a link (two nodes) in PCN that cooperate, but do not trust each other.

Actions for link in PCNs

Action	Capacity/Size	Cost
Create link	c	c
Forward transaction	x	0^{*}
Reject transaction	x	$f x+m$

Definitions

Cost
Channel creation + Cost for rejection.

Definitions

Cost

Channel creation + Cost for rejection.
Problem
Given sequence of transactions $(\rightarrow, 10),(\leftarrow, 5),(\rightarrow, 3), \ldots$, find the solution of minimal cost.

Definitions

Cost

Channel creation + Cost for rejection.
Problem
Given sequence of transactions $(\rightarrow, 10),(\leftarrow, 5),(\rightarrow, 3), \ldots$, find the solution of minimal cost.

Solution
Initial capacity of the channel and which transactions to reject.

Outline of the talk

NP-hardness
Algorithm
Linear program
Approximating the channel capacity
Tracking the linear program

Hardness

Problem is NP-hard
For set of numbers x_{1}, x_{2}, \ldots and X, subset sum problem, we create transactions $\left(\rightarrow, x_{1}\right),\left(\rightarrow, x_{2}\right), \ldots,(\leftarrow, X)$. Problem is yes instance if the optimal solution has small cost.

Linear program

Constants: Fixed capacity M, Input $\left(\leftarrow, x_{i}\right)$.
Variables:
amount of i-th transaction accepted y_{i}.
balance on the left (right) after processing i-th transaction $S_{L, i}\left(S_{R, i}\right)$.

Linear program

Constants: Fixed capacity M, Input $\left(\leftarrow, x_{i}\right)$.
Variables:
amount of i-th transaction accepted y_{i}.
balance on the left (right) after processing i-th transaction $S_{L, i}\left(S_{R, i}\right)$.

$$
\begin{aligned}
& \text { minimise } \sum_{i} f \cdot\left(x_{i}-y_{i}\right)+m \frac{x_{i}-y_{i}}{x_{i}} \\
& \text { subject to } \quad \forall i: y_{i}, S_{L, i}, S_{R, i} \geq 0 \\
& \forall i: y_{i} \leq x_{i} \\
& \forall i: S_{L, i}+S_{R, i}=M \\
& \forall x_{i} \in \rightarrow: S_{L, i}=S_{L, i-1}-y_{i} \\
& \forall x_{i} \in \rightarrow: S_{R, i}=S_{R, i-1}+y_{i} \\
& \forall x_{i} \in \leftarrow: S_{L, i}=S_{L, i-1}+y_{i} \\
& \forall x_{i} \in \leftarrow: S_{R, i}=S_{R, i-1}-y_{i}
\end{aligned}
$$

Optimal capacity

If optimal capacity is M^{\prime}, we have

$$
M^{\prime}+\text { reject }_{M^{\prime}}
$$

Optimal capacity

If optimal capacity is M^{\prime}, we have

$$
M^{\prime}+\text { reject }_{M^{\prime}}
$$

We try all capacities M of the form $(1+\varepsilon)^{k}$.

$$
\min \left(\frac{M}{1+\varepsilon}+\operatorname{reject}_{M}\right)
$$

Accepting fully accepted transaction

Transaction where $y_{i}=x_{i}$ is fully accepted.
We track S_{L} and S_{R}, we add reserves R_{L} and R_{R}, such that $R_{L}+R_{R}=M$.

Accepting fully accepted

 transactions

Accepting fully accepted transactions

Accepting fully accepted transactions

Accepting fully accepted

 transactions
$R_{L}<x_{i}-y_{i}$
cannot accept
$R_{R} \geq y_{i}$
$x_{i}<M ; R_{L}+R_{R}=M$

Main idea of the algorithm

Transactions are almost-accepted if

$$
\frac{y_{i}}{x_{i}} \geq \frac{\sqrt{3}}{\sqrt{3}+1}
$$

Main idea of the algorithm

Transactions are almost-accepted if

$$
\frac{y_{i}}{x_{i}} \geq \frac{\sqrt{3}}{\sqrt{3}+1} .
$$

Similarly as before, we can increase $R_{L}+R_{R}=\sqrt{3} M$ and accept almost-accepted transactions.

Main idea of the algorithm

Transactions are almost-accepted if

$$
\frac{y_{i}}{x_{i}} \geq \frac{\sqrt{3}}{\sqrt{3}+1}
$$

Similarly as before, we can increase $R_{L}+R_{R}=\sqrt{3} M$ and accept almost-accepted transactions. This gives $(1+\sqrt{3})(1+\varepsilon)$ algorithm.

Summary

Problem definition
Hardness
$(1+\sqrt{3})(1+\varepsilon)$-approximation algorithm

