
(Almost) Ten Years of the Amoebot Model
of Programmable Matter

Joshua J. Daymude

SIROCCO 2023 — June 6, 2023

Universidad de Alcalá, Alcalá de Henares, Spain



Self-Organizing Systems

Cooperative decentralized systems are capable of surprising emergent behavior arising from 
relatively simple interactions of their members.

HMSKCLCA 2011
Microsoft Research 2016

https://iopscience.iop.org/article/10.1088/1478-3975/8/2/026016
https://www.youtube.com/watch?v=3SYYW_7Ah7c


Programmable Matter

Programmable matter is a substance that can change its physical properties autonomously 
based on user input or environmental stimuli.

“Catoms”
PB 2018

“Kilobots”
RCN 2014

“M-Blocks”
RGR 2013

“Particle Robots” 
LBBCRHRL 2019

https://link.springer.com/article/10.1007/s10514-018-9710-0
http://science.sciencemag.org/content/345/6198/795
https://ieeexplore.ieee.org/document/6696971
https://www.nature.com/articles/s41586-019-1022-9


Programmable Matter

Centimeter/millimeter-scale robots are more limited than, say, Spot from Boston Dynamics.

Most programmable matter and modular robotic systems assume:

• Modest compute resources.

• Strictly local sensing and communication (e.g., 1-neighborhood).

• Limited (e.g., constant-size) or no persistent memory.

• Local, rudimentary movement.



Programmable Matter in Theory and Practice

Programmable matter systems can be organized by their degree of self-determination in 
deciding and enacting local behaviors.

Passive Active

T
h
e
o
ry

P
ra

ct
ic

e

DNA Self-
Assembly

Molecular
Computation

Chemical 
Reaction 
Networks

Tile Self-
Assembly 
Models

Wireless 
Sensor 

Networks

Population Protocols

Slime Molds

Self-Reconfigurable Modular Robots

Swarm Robots

Claytronics
(Catoms)

The Nubot
Model

The Amoebot 
Model

Metamorphic 
Robots

Autonomous 
Mobile Robots

Kilobots

Origami 
Robots

“SynCells”

BOBbots

M-Blocks

Supersmarticles

Xenobots

Stone Age Model



The Amoebot Model: A Typical Setup (2014–2021)

The amoebot model is an abstraction of programmable matter.

• Space: triangular lattice 𝐺Δ.

• Amoebots can be contracted (one node)
or expanded (two adjacent nodes).

• Amoebots are anonymous, have only 
constant-size memories, communicate
with immediate neighbors, and have no
global compass.

• Self-actuated movements via expansions,
contractions, and handovers.

• Sequential, weakly fair adversary: one
amoebot acts per time, every amoebot acts
infinitely often.



Connections to Other Models

The amoebot model has been studied in relation to:

• Autonomous mobile robots, incorporating their Look-Compute-Move cycles into amoebot
actions [DFPSV 2018, FPS 2019, DFSVY 2020].

• Hybrid programmable matter, where amoebots are replaced by passive “tiles” that are 
moved around by relatively few robots walking on the structure’s surface [GHRKKS 2018, 
GHKKRSS 2018/20, KLS 2023].

• Any amoebot algorithm can be simulated in the tile automata (TA) model (closely related to 
DNA tiling) [ADDPR 2019], which in turn can be simulated by the signal-passing tile 
assembly model (STAM) [CLSW 2020].



A Visual History of Amoebot Results

40+ papers: Models, shape formation/recognition, leader election, object coating, phase 
transitions, and more!



Leader Election in the Amoebot Model

Goal. Some amoebot must eventually, irreversibly declare itself the system’s unique leader.

*Implementation by Ryan Yiu.



Leader Election in the Amoebot Model

Many algorithms have been developed for different scenarios:

Algorithm Space Common Ori. Adversary Det. Holes Stationary # Leaders Runtime

[DGSBRS 2015] 2D Chirality Strong Seq. ❌ ✅ ✅ 1 𝒪 𝐿∗ , exp.

[DGRSS 2017] 2D Chirality Strong Seq. ❌ ✅ ✅ 1, w.h.p. 𝒪 𝐿 , w.h.p.

[DFSVY 2020] 2D None Sync. ✅ ❌ ✅ 𝑘 ≤ 3 𝒪 𝑛2

[GAMT 2019] 2D Chirality Strong Seq. ✅ ❌ ✅ 1 𝒪 𝑟 + 𝑚𝑡𝑟𝑒𝑒

[EKLM 2019] 2D None Strong Seq. ✅ ✅ ❌ 1 𝒪 𝐿𝑛2

[BB 2019] 2D Chirality Weak Seq. ✅ ✅ ✅ 𝑘 ≤ 6 𝒪 𝑛2

[DKM 2021] 2D Chirality Strong Seq. ✅ ✅ ❌ 1 𝒪 𝐿 + 𝐷

[GAMT 2022] 3D View Strong Seq. ✅ ❌ ✅ 1 𝒪 𝑛

[BCDR 2023] 2&3D None Strong Seq. ✅ ❌ ✅ 1 𝒪 𝑛



Leader Election in the Amoebot Model: Algorithm Ideas

Approach 1. Compete on the system’s unique outer boundary, either with random identifiers 
(for 1 leader w.h.p.) or deterministically (for 𝑘 leaders) [DGSBRS 2015, DGSRS 2017, BB 2019].

• Pros: Handles holes, stationary, and achieves the best known runtime (when randomized).

• Cons: Requires common chirality, and the deterministic algorithm is slow.



Leader Election in the Amoebot Model: Algorithm Ideas

Approach 2. “Erode” candidate amoebots whose removal leaves a connected structure of 
candidates until 𝑘 remain (for 𝑘-symmetry). [DFSVY 2020, GAMT 2022, BCDR 2023].

• Pros: Simple, deterministic, handles assorted orientations, and flexible across 2D and 3D.

• Cons: Can’t handle holes.



Leader Election in the Amoebot Model: Algorithm Ideas

Approach 3. Use amoebot movements in a clever way (under a sequential adversary) to break 
otherwise unbreakable symmetries. [EKLM 2019, DKM 2021].

• Pros: Deterministic, handles holes, and always elects a unique leader.

• Cons: Involves movement—which isn’t necessarily bad—but makes concurrency more 
difficult (more on that later). Also, the fast 𝒪 𝐿 + 𝐷 algorithm requires common chirality.



Other Problems with Stateful Distributed Algorithms

• Basic Shape Formation. Configure the system as some regular shape (e.g., a line, triangle, 
hexagon, or parallelogram) [DGRSS 2015, DGSBRS 2015, NS 2020, DRS 2021].

• General Shape Formation. Configure the system as a scaled-up version of a shape given as a 
(constant-size) blueprint of triangles [DGRSS 2016, DFSVY 2020].

• Object Coating. Given a static object, configure the system in as many even layers as 
possible over its surface [DGRSS 2017, DDGPRSS 2016/18].

• Convex Hull Formation. Given a static object, configure the system as its (restricted-
orientation) convex hull [DGHKSR 2020].

• Collaborative Computation. Use amoebots as registers to perform counting, matrix/vector 
multiplication, or simulate Turing machines [PR 2018, DGHKSR 2020, DFSVY 2020].



Leveraging Phase Transitions for Collective Behavior

Key Idea. Leverage physical interactions to translate digital algorithms for simple analog robots.

* All robot design, experiment data, and videos are the work of Shengkai Li, Bahnisikha Dutta, 
Ram Avinery, Enes Aydin, and Daniel I. Goldman.

Markov chain ℳ𝐶 for 
Compression

Markov chain ℳ𝐴 for 
Aggregation

Aggregation in 
BOBbots



Leveraging Phase Transitions for Collective Behavior

[CDRRicha 2016]: The distributed, stochastic algorithm for compression:

Similar results for shortcut bridging, separation, aggregation, alignment, foraging…

Fix 𝜆 > 1. Start in any connected configuration. Repeat:

1. Pick a random particle.

2. Pick a random neighboring node.

3. If the proposed node is empty, move with probability min 𝜆𝑒
′−𝑒 , 1

if connectivity is maintained.

4. Otherwise, do nothing.

No compression (expansion) Compression2 + 22.17 𝜆



Fault Tolerance in the Amoebot Model

The vast majority of amoebot papers (>90%) assume reliable communication and processing.

[DFPSV 2018]: From a particular set of initial configurations, for any number 𝑓 ≤ 𝑛 − 4 of 
permanently crashed amoebots, the remaining 𝑛 − 𝑓 non-faulty amoebots can reform a line if 
they have access to a fault detector for their neighbors.

[NS 2020]: Similar to the above, but studies under what conditions connectivity is maintained.

[DRW 2021]: A spanning forest structure can be dynamically repaired in spite of crash failures 
as long as the set of non-faulty amoebots is connected.

[KSW 2022]: Under temporary crash failures, spanning forest formation and basic shape 
formation remain solvable.

Open Question: What classes of crash faults are actually worth distinguishing? What about 
Byzantine faults? What about self-stabilization?



The Canonical Amoebot Model [DRS 2021/23]

The canonical amoebot model was introduced to standardize the many disparate model 
assumptions made in 2014–2021. It also addressed concurrency (more on that later).



The Canonical Amoebot Model [DRS 2021/23]

In the canonical amoebot model, amoebot functionality is partitioned into:

• A higher-level application layer where algorithms are defined in terms of operations.

• A lower-level system layer that executes an amoebot’s operations via message passing.



The Canonical Amoebot Model [DRS 2021/23]

Algorithms in the canonical amoebot model are specified in terms of actions:

𝑙𝑎𝑏𝑒𝑙 ∶ 𝑔𝑢𝑎𝑟𝑑 → ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠⟩

• 𝑙𝑎𝑏𝑒𝑙 specifies the action’s name.

• 𝑔𝑢𝑎𝑟𝑑 is a Boolean predicate determining whether this action is currently enabled.

• 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 specifies the computation and sequence of operations to perform if enacted.

Example from Hexagon-Formation:



The Canonical Amoebot Model [DRS 2021/23]

An adversary controls the timing of amoebot actions. Four levels of concurrency:

Sequential. At most one amoebot can be 
active at a time.

𝑘-isolated. No amoebots within distance
𝑘 can be simultaneously active.

(Semi-)Synchronous. Arbitrary sets of amoebots 
can be active in each discrete round.

Asynchronous. Arbitrary sets of amoebots can 
be simultaneously active.



The Canonical Amoebot Model [DRS 2021/23]

The adversary can only activate amoebots with enabled actions. Three levels of fairness:

1. Strongly Fair. Every amoebot that is enabled infinitely often is activated infinitely often.

2. Weakly Fair. Every continuously enabled amoebot is eventually activated.

3. Unfair. Some enabled amoebot is eventually activated.

Informally, a round is the time required for the slowest continuously enabled amoebot to 
execute a single action.

Definition. Let 𝑡𝑖 be the time round 𝑖 starts, and let ℰ𝑖 be the set of amoebots enabled or 
executing an action at time 𝑡𝑖 . Round 𝑖 ends at the earliest time 𝑡𝑖+1 > 𝑡𝑖 by which every 
amoebot in ℰ𝑖 either completed an action execution or was disabled.



A General Framework for Concurrency Control

Except the semi-synchronous Look-Compute-Move based algorithms of [DFSVY 2020, NS 2020], 
all algorithms before 2021 were built for sequential, fair adversaries.

The asynchronous message passing of the canonical model lets us study concurrency.

This is the best of both worlds: the ease of designing algorithms in the sequential setting and 
the relevance of correct execution in the more realistic concurrent setting.

This is too optimistic and may be impossible to guarantee in general, so instead we only 
consider algorithms 𝒜 that obey certain conventions.

Concurrency 
Control 

Framework

Unfair 
Sequential 

Algorithm 𝒜

Unfair 
Asynchronous 
Algorithm 𝒜′

Conventions



A General Framework for Concurrency Control

Key Ideas:

• On activation, an amoebot 𝐴 first attempts to lock its neighborhood [DRS 2022].

• If successful, its locked neighbors cannot move or change their memory contents.

• So 𝐴 can evaluate its guards and perform its actions as if things were sequential (sort of).

• Failed locking attempts and expansions have no effect on the rest of the system.

Key Issue: Locks can’t stop amoebots from expanding into an acting amoebot’s neighborhood!

Example. “If I have no neighbors, then expand in the ‘forward’ direction.”



A General Framework for Concurrency Control

1. Validity. Any execution of an enabled action succeeds in the sequential setting.

2. Phase Structure. Compute operations precede (at most one) movement operation.

3. Expansion-Robustness. Action executions are not affected by (unlocked) amoebots that 
concurrently enter the acting amoebot’s neighborhood.

Theorem [DRS 2021/23]. Consider any algorithm 𝒜 satisfying Conventions 1–3 and let 𝒜′ be 
the algorithm obtained by the concurrency control framework. If 𝒜 terminates under any 
sequential execution, then every asynchronous execution of 𝒜′ terminates in an outcome that 
some sequential execution of 𝒜 also terminates in.

Concurrency 
Control 

Framework

Unfair 
Sequential 

Algorithm 𝒜

Unfair 
Asynchronous 
Algorithm 𝒜′



A General Framework for Concurrency Control

Expansion-robustness seems technical and hard. Do any algorithms satisfy it?

Observation. All stationary algorithms (those that don’t move) are trivially expansion-robust.

Theorem [DRS 2023]. The Hexagon-Formation algorithm (adapted from [DGRSS 2015]) satisfies 
expansion robustness, and thus is compatible with the concurrency control framework.



Long-Range Coordination: Reconfigurable Circuits

In the human nervous and muscular systems, cells rapidly coordinate via electrical signals that 
are propagated along biological “circuits”.

The reconfigurable circuit extension [FPSD 2021/22] aims to do this for amoebots:

Each amoebot has 𝑘 ≥ 1 pins per neighbor that it can dynamically organize into circuits.

“Beeping” sends a signal to all amoebots on a circuit in the next synchronous round, but the 
receiving amoebots do not know the source of this beep or its multiplicity.



Long-Range Coordination: Reconfigurable Circuits

Using reconfigurable circuits yields the first sublinear amoebot algorithms for existing problems 
like leader election, consensus, and shape recognition [FPSD 2021/22]:



Long-Range Coordination: Reconfigurable Circuits

Reconfigurable circuits also admit polylogarithmic algorithms for computing various structural 
components, like extrema, boundaries, and spanning trees [PSW 2022]:



Long-Range Coordination: Joint Movements

The related joint movement extension allows sets of amoebots to simultaneously expand or 
contract (similar to the nubot model), moving the rest of the system accordingly [PKS 2023]:

Amoebots can be organized into rhombic and hexagonal “meta-modules” with higher-level 
movement primitives that can then simulate modular robot shape formation and locomotion:



Extending to 3D (Geometric) Space

Almost all theoretical research for programmable 
matter takes place in some planar graph structure 
(e.g., the geometric amoebot model’s triangular 
lattice), but modular robotics and programmable 
matter practitioners work in 3D.

The 3D geometric space variant uses the face-
centered cubic lattice:

• Equivalent to the “cannonball packing”.

• Spherical or rhombic-dodecahedral modules.

• Each amoebot has 12 neighbors when contracted 
and up to 18 when expanded.

“Catoms”
PB 2018

https://link.springer.com/article/10.1007/s10514-018-9710-0


Extending to 3D (Geometric) Space

The complexity in 3D is a combination of 
amoebots’ orientations and the topological 
analysis required to understand system shapes.

Only leader election has been studied in this 3D 
variant of the amoebot model [GAMT 2022, BCDR 
2023]; 3D coating has recently been discussed in 
the hybrid model [KLS 2023] and shape formation 
has been studied for 3D catoms [TPB 2021].

Eventually, it will be interesting to study these 
problems under physical constraints relevant for 
practical systems, like gravity stability and strain.



Closing Thoughts and Future Directions

• A request for (some) unity: Please use the canonical amoebot model’s assumption variants!

• A careful revisiting of pre-canonical works may reveal yet unresolved questions, as the 
comparison of leader election results did.

• Fault tolerance, self-stabilization, reconfigurable circuits, joint movements, and 3D space are 
developing areas—plenty of room for new ideas.



A Brief Memory of SIROCCO 2015



Thank you!

Email: jdaymude@asu.edu

Website: jdaymude.github.io

@joshdaymude

fediscience.org/@joshdaymude

mailto:jdaymude@asu.edu
https://jdaymude.github.io/

	Slide 1
	Slide 2: Self-Organizing Systems
	Slide 3: Programmable Matter
	Slide 4: Programmable Matter
	Slide 5: Programmable Matter in Theory and Practice
	Slide 6: The Amoebot Model: A Typical Setup (2014–2021)
	Slide 7: Connections to Other Models
	Slide 8: A Visual History of Amoebot Results
	Slide 9: Leader Election in the Amoebot Model
	Slide 10: Leader Election in the Amoebot Model
	Slide 11: Leader Election in the Amoebot Model: Algorithm Ideas
	Slide 12: Leader Election in the Amoebot Model: Algorithm Ideas
	Slide 13: Leader Election in the Amoebot Model: Algorithm Ideas
	Slide 14: Other Problems with Stateful Distributed Algorithms
	Slide 15: Leveraging Phase Transitions for Collective Behavior
	Slide 16: Leveraging Phase Transitions for Collective Behavior
	Slide 17: Fault Tolerance in the Amoebot Model
	Slide 18: The Canonical Amoebot Model [DRS 2021/23]
	Slide 19: The Canonical Amoebot Model [DRS 2021/23]
	Slide 20: The Canonical Amoebot Model [DRS 2021/23]
	Slide 21: The Canonical Amoebot Model [DRS 2021/23]
	Slide 22: The Canonical Amoebot Model [DRS 2021/23]
	Slide 23: A General Framework for Concurrency Control
	Slide 24: A General Framework for Concurrency Control
	Slide 25: A General Framework for Concurrency Control
	Slide 26: A General Framework for Concurrency Control
	Slide 27: Long-Range Coordination: Reconfigurable Circuits
	Slide 28: Long-Range Coordination: Reconfigurable Circuits
	Slide 29: Long-Range Coordination: Reconfigurable Circuits
	Slide 30: Long-Range Coordination: Joint Movements
	Slide 31: Extending to 3D (Geometric) Space
	Slide 32: Extending to 3D (Geometric) Space
	Slide 33: Closing Thoughts and Future Directions
	Slide 34: A Brief Memory of SIROCCO 2015
	Slide 35

